3D printed microfluidic devices for lipid bilayer recordings

被引:17
|
作者
Ogishi, Kazuto [1 ]
Osaki, Toshihisa [2 ,3 ]
Morimoto, Yuya [1 ]
Takeuchi, Shoji [1 ,2 ,3 ]
机构
[1] Univ Tokyo, Grad Sch Informat Sci & Technol, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
[2] Kanagawa Inst Ind Sci & Technol, Takatsu Ku, 3-2-1 Sakado, Kawasaki, Kanagawa 2130012, Japan
[3] Univ Tokyo, Inst Ind Sci, Meguro Ku, 4-6-1 Komaba, Tokyo 1538505, Japan
关键词
ION CHANNELS; ALPHA-HEMOLYSIN; TRANSLOCATION; APERTURES;
D O I
10.1039/d1lc01077h
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This paper verifies the single-step and monolithic fabrication of 3D structural lipid bilayer devices using stereolithography. Lipid bilayer devices are utilized to host membrane proteins in vitro for biological assays or sensing applications. There is a growing demand to fabricate functional lipid bilayer devices with a short lead-time, and the monolithic fabrication of components by 3D printing is highly anticipated. However, the prerequisites of 3D printing materials which lead to reproducible lipid bilayer formation are still unknown. Here, we examined the feasibility of membrane protein measurement using lipid bilayer devices fabricated by stereolithography. The 3D printing materials were characterized and the surface smoothness and hydrophobicity were found to be the relevant factors for successful lipid bilayer formation. The devices were comparable to the ones fabricated by conventional procedures in terms of measurement performances like the amplitude of noise and the waiting time for lipid bilayer formation. We further demonstrated the extendibility of the technology for the functionalization of devices, such as incorporating microfluidic channels for solution exchangeability and arraying multiple chambers for robust measurement.
引用
收藏
页码:890 / 898
页数:10
相关论文
共 50 条
  • [1] Inkjet 3D Printed Microfluidic Devices
    Adamski, Krzysztof
    Kubicki, Wojciech
    Walczak, Rafal
    PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON MIXED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (MIXDES 2016), 2016, : 504 - 506
  • [2] Photogrammetric measurements of 3D printed microfluidic devices
    Guerra, M. G.
    Volpone, C.
    Galantucci, L. M.
    Percoco, G.
    ADDITIVE MANUFACTURING, 2018, 21 : 53 - 62
  • [3] 3D printed microfluidic devices with integrated valves
    Rogers, Chad I.
    Qaderi, Kamran
    Woolley, Adam T.
    Nordin, Gregory P.
    BIOMICROFLUIDICS, 2015, 9 (01):
  • [4] 3D printed microfluidic devices: enablers and barriers
    Waheed, Sidra
    Cabot, Joan M.
    Macdonald, Niall P.
    Lewis, Trevor
    Guijt, Rosanne M.
    Paull, Brett
    Breadmore, Michael C.
    LAB ON A CHIP, 2016, 16 (11) : 1993 - 2013
  • [5] 3D printed modules for integrated microfluidic devices
    Lee, Kyoung G.
    Park, Kyun Joo
    Seok, Seunghwan
    Shin, Sujeong
    Kim, Do Hyun
    Park, Jung Youn
    Heo, Yun Seok
    Lee, Seok Jae
    Lee, Tae Jae
    RSC ADVANCES, 2014, 4 (62): : 32876 - 32880
  • [6] 3D printed mold leachates in PDMS microfluidic devices
    Marcia de Almeida Monteiro Melo Ferraz
    Jennifer Beth Nagashima
    Bastien Venzac
    Séverine Le Gac
    Nucharin Songsasen
    Scientific Reports, 10
  • [7] Editorial for the Special Issue on 3D Printed Microfluidic Devices
    Tasoglu, Savas
    Folch, Albert
    MICROMACHINES, 2018, 9 (11):
  • [8] Aging behavior of fully 3D printed microfluidic devices
    Shvets, Petr
    Shapovalov, Viktor
    Azarov, Daniil
    Kolesnikov, Alexey
    Prokopovich, Pavel
    Popov, Alexander
    Chapek, Sergei
    Guda, Alexander
    Leshchinsky, Mark
    Soldatov, Alexander
    Goikhman, Alexander
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 134 (1-2): : 569 - 578
  • [9] 3D Printed Microfluidic Devices for Drug Release Assays
    Amoyav, Benzion
    Goldstein, Yoel
    Steinberg, Eliana
    Benny, Ofra
    PHARMACEUTICS, 2021, 13 (01) : 1 - 14
  • [10] 3D printed microfluidic devices with electrodes for electrochemical analysis
    Selemani, Major A.
    Cenhrang, Khamhbawihum
    Azibere, Samuel
    Singhateh, Mariama
    Martin, R. Scott
    ANALYTICAL METHODS, 2024, 16 (41) : 6941 - 6953