A branch-and-bound algorithm for the concave cost supply problem

被引:3
作者
Yenipazarli, Arda [1 ]
Benson, Harold P. [2 ]
Erenguc, Selcuk [2 ]
机构
[1] Georgia Southern Univ, Dept Logist & Supply Chain Management, Statesboro, GA 30460 USA
[2] Univ Florida, Dept Informat Syst & Operat Management, Gainesville, FL USA
关键词
supply management; concave cost; global optimisation; branch and bound; NONCONVEX PROGRAMMING-PROBLEMS; SCHEDULING PROBLEM; PROCUREMENT;
D O I
10.1080/00207543.2016.1165358
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Effective supplier selection and allocation of order quantity among multiple suppliers are indispensable to the success of a manufacturing company. While companies have begun to turn into a comprehensive multi-criteria approach, most buyers still consider purchasing cost to be their primary concern in selecting their suppliers. In this paper, we consider the concave cost supply problem where a manufacturer seeks to select the suppliers and simultaneously procure the quantity of material/component required for production at the minimum total cost during a standard production period. We provide and validate an effective and efficient branch-and-bound algorithm that is finite and that finds the global optimal solution of the problem without any restrictions on the cost functions or on the set of input parameters used in the problem. Numerical experiments are conducted to evaluate the performance of the proposed algorithm.
引用
收藏
页码:3943 / 3961
页数:19
相关论文
共 17 条
[1]  
[Anonymous], 2013, TOTAL MAT MANAGEMENT
[2]  
[Anonymous], 1996, Global Optimization. Deterministic Approaches
[3]   Supplier selection problem for a single manufacturing unit under stochastic demand [J].
Awasthi, A. ;
Chauhan, S. S. ;
Goyal, S. K. ;
Proth, Jean-Marie .
INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 2009, 117 (01) :229-233
[4]   Genetic algorithms for a supply management problem: MIP-recombination vs greedy decoder [J].
Borisovsky, P. ;
Dolgui, A. ;
Eremeev, A. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 195 (03) :770-779
[5]   Allocating procurement to capacitated suppliers with concave quantity discounts [J].
Burke, Gerard J. ;
Geunes, Joseph ;
Romeijn, H. Edwin ;
Vakharia, Asoo .
OPERATIONS RESEARCH LETTERS, 2008, 36 (01) :103-109
[6]  
Chauhan SS, 2005, APPL OPTIM, V94, P167
[7]   Approximation of the supply scheduling problem [J].
Chauhan, SS ;
Eremeev, AV ;
Romanova, AA ;
Servakh, VV ;
Woeginger, GJ .
OPERATIONS RESEARCH LETTERS, 2005, 33 (03) :249-254
[8]   The concave cost supply problem [J].
Chauhan, SS ;
Proth, JM .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2003, 148 (02) :374-383
[9]   DISCRETE-VARIABLE EXTREMUM PROBLEMS [J].
DANTZIG, GB .
OPERATIONS RESEARCH, 1957, 5 (02) :266-277
[10]  
EREMEEV A, 2007, J APPL IND MATH, V1, P433, DOI DOI 10.1134/S1990478907040060