Reprint of: Endomorphism rings of reductions of Drinfeld modules

被引:1
作者
Garai, Sumita [1 ]
Papikian, Mihran [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
Drinfeld modules; Endomorphism rings; POLYNOMIALS; FIELDS;
D O I
10.1016/j.jnt.2021.10.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A = F-q [T] be the polynomial ring over F-q, and F be the field of fractions of A. Let phi be a Drinfeld A-module of rank r >= 2 over F. For all but finitely many primes p (sic) A, one can reduce phi modulo p to obtain a Drinfeld A-module phi circle times F-p of rank r over F-p = A/p. The endomorphism ring epsilon(p) = End(Fp) (phi circle times F-p) is an order in an imaginary field extension K of F of degree r. Let O-p be the integral closure of A in K, and let pi(p) is an element of epsilon(p) be the Frobenius endomorphism of phi circle times F-p. Then we have the inclusion of orders A[pi(p)] subset of epsilon(p) subset of O-p in K. We prove that if End(F)(alg) (phi) = A, then for arbitrary non-zero ideals n, m of A there are infinitely many p such that n divides the index chi(epsilon(p) /A[pi(p)]) and m divides the index x(O-p/epsilon(p)). We show that the index chi(epsilon(p)/A[pi(p)]) is related to a reciprocity law for the extensions of F arising from the division points of phi. In the rank r = 2 case we describe an algorithm for computing the orders A[pi(p)] subset of epsilon(p) subset of O-p, and give some computational data. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:155 / 176
页数:22
相关论文
共 23 条
[1]   On ramification in the compositum of function fields [J].
Anbar, Nurdagul ;
Stichtenoth, Henning ;
Tutdere, Seher .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2009, 40 (04) :539-552
[2]   On some subrings of ore polynomials connected with finite Drinfeld modules [J].
Angles, B .
JOURNAL OF ALGEBRA, 1996, 181 (02) :507-522
[3]  
[Anonymous], 1974, Mat. Sb. (N.S.)
[4]  
[Anonymous], 1977, Mat. Sb. (N.S.)
[5]   Integral Tate modules and splitting of primes in torsion fields of elliptic curves [J].
Centeleghe, Tommaso Giorgio .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2016, 12 (01) :237-248
[6]   The Distribution of the First Elementary Divisor of the Reductions of a Generic Drinfeld Module of Arbitrary Rank [J].
Cojocaru, Alina Carmen ;
Shulman, Andrew Michael .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2015, 67 (06) :1326-1357
[7]   Drinfeld Modules, Frobenius Endomorphisms, and CM-Liftings [J].
Cojocaru, Alina Carmen ;
Papikian, Mihran .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (17) :7787-7825
[8]   An average Chebotarev Density Theorem for generic rank 2 Drinfeld modules with complex multiplication [J].
Cojocaru, Alina Carmen ;
Shulman, Andrew Michael .
JOURNAL OF NUMBER THEORY, 2013, 133 (03) :897-914
[9]   The splitting of primes in division fields of elliptic curves [J].
Duke, W ;
Tóth, A .
EXPERIMENTAL MATHEMATICS, 2002, 11 (04) :555-565
[10]  
Gekeler EU, 2008, T AM MATH SOC, V360, P1695