Prediction of structural and metal-to-semiconductor phase transitions in nanoscale MoS2, WS2, and other transition metal dichalcogenide zigzag ribbons

被引:41
作者
Gueller, F. [1 ,2 ,3 ]
Llois, A. M. [1 ,2 ,3 ,4 ]
Goniakowski, J. [3 ,5 ,6 ]
Noguera, C. [3 ,5 ,6 ]
机构
[1] CNEA, GIyANN, Ctr Atom Constituyentes, Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina
[3] FCEyN UBA, LIFAN, Buenos Aires, DF, Argentina
[4] FCEyN UBA, Dept Fis Juan Jose Giambiagi, Buenos Aires, DF, Argentina
[5] CNRS, UMR 7588, Inst Nanosci Paris, F-75252 Paris 05, France
[6] Univ Paris 06, INSP, UMR 7588, F-75252 Paris 05, France
来源
PHYSICAL REVIEW B | 2015年 / 91卷 / 07期
关键词
SINGLE-LAYER MOS2; NANOCLUSTERS; ENERGY;
D O I
10.1103/PhysRevB.91.075407
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
While MoS2 and WS2 nanostructures gain an increasing importance in a number of recent technological applications, the control of their structure as a function of their size and their environment appears of prominent importance. In the present study which relies on first-principles simulations, we predict the dimerized 1T' structural phase to be the actual ground state of MoS2, WS2, and MoSe2 zigzag nanoribbons of small width and monolayer thickness. We assign this result to the competition between edge energy-which favors the nonpolar 1T' edges over the polar 1H edges-and the energy of atoms in the center of the ribbons-which favors the 1H ground state of the infinite monolayers. A metal-to-semiconductor transition accompanies the structural transition. At variance, ZrS2 zigzag ribbons are predicted to display the 1T structure whatever their width. In compounds of major technological importance, such structural and electronic flexibility associated with polarity effects opens the possibility for controlling the ribbon type during synthesis.
引用
收藏
页数:7
相关论文
共 35 条
[1]   Mechanical and Electronic Properties of MoS2 Nanoribbons and Their Defects [J].
Ataca, C. ;
Sahin, H. ;
Akturk, E. ;
Ciraci, S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (10) :3934-3941
[2]   A QUANTUM-THEORY OF MOLECULAR-STRUCTURE AND ITS APPLICATIONS [J].
BADER, RFW .
CHEMICAL REVIEWS, 1991, 91 (05) :893-928
[3]   Atomic and electronic structure of MoS2 nanoparticles -: art. no. 085410 [J].
Bollinger, MV ;
Jacobsen, KW ;
Norskov, JK .
PHYSICAL REVIEW B, 2003, 67 (08)
[4]   One-dimensional metallic edge states in MoS2 -: art. no. 196803 [J].
Bollinger, MV ;
Lauritsen, JV ;
Jacobsen, KW ;
Norskov, JK ;
Helveg, S ;
Besenbacher, F .
PHYSICAL REVIEW LETTERS, 2001, 87 (19) :1-196803
[5]   Metallic and ferromagnetic edges in molybdenum disulfide nanoribbons [J].
Botello-Mendez, A. R. ;
Lopez-Urias, F. ;
Terrones, M. ;
Terrones, H. .
NANOTECHNOLOGY, 2009, 20 (32)
[6]   Chemically exfoliated single-layer MoS2: Stability, lattice dynamics, and catalytic adsorption from first principles [J].
Calandra, Matteo .
PHYSICAL REVIEW B, 2013, 88 (24)
[7]   Growth of ZnO thin films - experiment and theory [J].
Claeyssens, F ;
Freeman, CL ;
Allan, NL ;
Sun, Y ;
Ashfold, MNR ;
Harding, JH .
JOURNAL OF MATERIALS CHEMISTRY, 2005, 15 (01) :139-148
[8]   Coherent Atomic and Electronic Heterostructures of Single-Layer MoS2 [J].
Eda, Goki ;
Fujita, Takeshi ;
Yamaguchi, Hisato ;
Voiry, Damien ;
Chen, Mingwei ;
Chhowalla, Manish .
ACS NANO, 2012, 6 (08) :7311-7317
[9]   Photoluminescence from Chemically Exfoliated MoS2 [J].
Eda, Goki ;
Yamaguchi, Hisato ;
Voiry, Damien ;
Fujita, Takeshi ;
Chen, Mingwei ;
Chhowalla, Manish .
NANO LETTERS, 2011, 11 (12) :5111-5116
[10]   Transport properties of MoS2 nanoribbons: edge priority [J].
Erdogan, E. ;
Popov, I. H. ;
Enyashin, A. N. ;
Seifert, G. .
EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (01)