A Higher Order Approximation Scheme on Lie Groups

被引:0
作者
Mueller, Andreas [1 ]
机构
[1] Univ Duisburg Essen, Chair Mech & Robot, D-47057 Duisburg, Germany
来源
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III | 2010年 / 1281卷
关键词
Differential equations; Lie groups; approximation; time stepping schemes;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents approximation formulae for approximating the solution of differential equitations = Omega(X)X on Lie groups. The approximation is given terms of time derivatives of vector field. A kth order approximation requires the first k - 1 time derivatives. The presented formulae are applicable when the vector field X is accessible, as for the velocity field of rigid bodies, but it can also be used to derive numerical time stepping schemes for solving the ODE.
引用
收藏
页码:1281 / 1283
页数:3
相关论文
共 8 条
[1]   NUMERICAL-INTEGRATION OF ORDINARY DIFFERENTIAL-EQUATIONS ON MANIFOLDS [J].
CROUCH, PE ;
GROSSMAN, R .
JOURNAL OF NONLINEAR SCIENCE, 1993, 3 (01) :1-33
[2]  
Helgason S., 1978, DIFFERENTIAL GEOMETR
[3]  
Iserles A., 2000, Acta Numerica, V9, P215, DOI 10.1017/S0962492900002154
[4]  
Lubich C., 2010, Springer Series in Computational Mathematics, V31
[6]   Approximation of finite rigid body motions from velocity fields [J].
Mueller, Andreas .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2010, 90 (06) :514-521
[7]   Runge-Kutta methods on Lie groups [J].
Munthe-Kaas, H .
BIT, 1998, 38 (01) :92-111
[8]   Collocation and relaxed collocation for the FER and the magnus expansions [J].
Zanna, A .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (04) :1145-1182