Arithmetic properties for Appell-Lerch sums

被引:3
作者
Ding, W. H. [1 ]
Xia, Ernest X. W. [1 ]
机构
[1] Suzhou Univ Sci & Technol, Sch Math Sci, Suzhou 215009, Jiangsu, Peoples R China
基金
美国国家科学基金会;
关键词
Appell-Lerch sums; Generalized Lambert series; Congruence; CONGRUENCES; RAMANUJANS;
D O I
10.1007/s11139-021-00497-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, Chan proved some congruences and gave several conjectures for Appell-Lerch sums. Qu, Wang and Yao proved congruences modulo 2 which generalize some conjectures given by Chan. In this paper, we prove new congruences modulo 4 and 5 for Appell-Lerch sums.
引用
收藏
页码:763 / 783
页数:21
相关论文
共 16 条
[1]   RAMANUJAN LOST NOTEBOOK .7. THE 6TH ORDER MOCK THETA FUNCTIONS [J].
ANDREWS, GE ;
HICKERSON, D .
ADVANCES IN MATHEMATICS, 1991, 89 (01) :60-105
[2]  
App P., 1884, Ann. Sci. Ecole Norm. Sup., V1, P135
[3]  
Appell, 1884, ANN SCI COLE NORM SU, V2, P9, DOI [10.24033/asens.248, DOI 10.24033/ASENS.248]
[4]  
Appell M.P., 1884, Ann. Scient. l'ENS, 3e serie, VI, P9
[5]  
Berndt B.C., 1991, Ramanujan's Notebook, DOI [10.1007/978-1-4612-0965-2, DOI 10.1007/978-1-4612-0965-2]
[6]   Congruences for Ramanujan's φ function [J].
Chan, Song Heng .
ACTA ARITHMETICA, 2012, 153 (02) :161-189
[7]   TWO CONGRUENCES FOR APPELL-LERCH SUMS [J].
Chan, Song Heng ;
Mao, Renrong .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2012, 8 (01) :111-123
[8]   Heeke-type double sums, Appell Lerch sums, and mock theta functions, I [J].
Hickerson, Dean R. ;
Mortenson, Eric T. .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2014, 109 :382-422
[9]   CUBIC ANALOGS OF THE JACOBIAN THETA-FUNCTION THETA(Z,Q) [J].
HIRSCHHORN, M ;
GARVAN, F ;
BORWEIN, J .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1993, 45 (04) :673-694
[10]  
Hirschhorn M. D., 2005, Journal of Combinatorial Mathematics and Combinatorial Computing, V53, P65