Update on the State of the Science for Analytical Methods for Gene-Environment Interactions

被引:78
作者
Gauderman, W. James [1 ]
Mukherjee, Bhramar [2 ]
Aschard, Hugues [3 ,4 ]
Hsu, Li [5 ]
Lewinger, Juan Pablo [1 ]
Patel, Chirag J. [6 ]
Witte, John S. [7 ]
Amos, Christopher [8 ]
Tai, Caroline G. [7 ]
Conti, David [1 ]
Torgerson, Dara G. [9 ]
Lee, Seunggeun [2 ]
Chatterjee, Nilanjan [10 ,11 ]
机构
[1] Univ Southern Calif, Keck Sch Med, Dept Prevent Med, Div Biostat, 2001 North Soto St,202-K, Los Angeles, CA 90032 USA
[2] Univ Michigan, Sch Publ Hlth, Dept Biostat, Ann Arbor, MI 48109 USA
[3] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA USA
[4] Inst Pasteur, Ctr Bioinformat Biostat & Biol Integrat C3BI, Paris, France
[5] Fred Hutchinson Canc Res Ctr, Div Publ Hlth Sci, Biostat Program, 1124 Columbia St, Seattle, WA 98104 USA
[6] Harvard Med Sch, Dept Biomed Informat, Boston, MA USA
[7] Univ Calif San Francisco, Dept Epidemiol & Biostat, San Francisco, CA 94143 USA
[8] Dartmouth Coll, Geisel Sch Med, Dept Biomed Data Sci, 1 Med Ctr Dr, Lebanon, NH 03756 USA
[9] Univ Calif San Francisco, Dept Med, San Francisco, CA USA
[10] Johns Hopkins Univ, Dept Biostat, Bloomberg Sch Publ Hlth, Baltimore, MD 21205 USA
[11] Johns Hopkins Univ, Sch Med, Dept Oncol, Baltimore, MD 21205 USA
基金
美国国家卫生研究院;
关键词
exposure; gene-environment interaction; GWAS; power; software; statistical models; QUANTITATIVE TRAIT LOCI; GENOME-WIDE ASSOCIATION; BREAST-CANCER RISK; SET-BASED TEST; RARE VARIANTS; LUNG DEVELOPMENT; COMMON VARIANTS; AIR-POLLUTION; MARKER-SET; METAANALYSIS;
D O I
10.1093/aje/kwx228
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
The analysis of gene-environment interaction (GxE) may hold the key for further understanding the etiology of many complex traits. The current availability of high-volume genetic data, the wide range in types of environmental data that can be measured, and the formation of consortiums of multiple studies provide new opportunities to identify GxE but also new analytical challenges. In this article, we summarize several statistical approaches that can be used to test for GxE in a genome-wide association study. These include traditional models of GxE in a case-control or quantitative trait study as well as alternative approaches that can provide substantially greater power. The latest methods for analyzing GxE with gene sets and with data in a consortium setting are summarized, as are issues that arise due to the complexity of environmental data. We provide some speculation on why detecting GxE in a genome-wide association study has thus far been difficult. We conclude with a description of software programs that can be used to implement most of the methods described in the paper.
引用
收藏
页码:762 / 770
页数:9
相关论文
共 84 条
[1]   Limitations of the case-only design for identifying gene-environment interactions [J].
Albert, PS ;
Ratnasinghe, D ;
Tangrea, J ;
Wacholder, S .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2001, 154 (08) :687-693
[2]   A global reference for human genetic variation [J].
Altshuler, David M. ;
Durbin, Richard M. ;
Abecasis, Goncalo R. ;
Bentley, David R. ;
Chakravarti, Aravinda ;
Clark, Andrew G. ;
Donnelly, Peter ;
Eichler, Evan E. ;
Flicek, Paul ;
Gabriel, Stacey B. ;
Gibbs, Richard A. ;
Green, Eric D. ;
Hurles, Matthew E. ;
Knoppers, Bartha M. ;
Korbel, Jan O. ;
Lander, Eric S. ;
Lee, Charles ;
Lehrach, Hans ;
Mardis, Elaine R. ;
Marth, Gabor T. ;
McVean, Gil A. ;
Nickerson, Deborah A. ;
Wang, Jun ;
Wilson, Richard K. ;
Boerwinkle, Eric ;
Doddapaneni, Harsha ;
Han, Yi ;
Korchina, Viktoriya ;
Kovar, Christie ;
Lee, Sandra ;
Muzny, Donna ;
Reid, Jeffrey G. ;
Zhu, Yiming ;
Chang, Yuqi ;
Feng, Qiang ;
Fang, Xiaodong ;
Guo, Xiaosen ;
Jian, Min ;
Jiang, Hui ;
Jin, Xin ;
Lan, Tianming ;
Li, Guoqing ;
Li, Jingxiang ;
Li, Yingrui ;
Liu, Shengmao ;
Liu, Xiao ;
Lu, Yao ;
Ma, Xuedi ;
Tang, Meifang ;
Wang, Bo .
NATURE, 2015, 526 (7571) :68-+
[3]   An integrated map of genetic variation from 1,092 human genomes [J].
Altshuler, David M. ;
Durbin, Richard M. ;
Abecasis, Goncalo R. ;
Bentley, David R. ;
Chakravarti, Aravinda ;
Clark, Andrew G. ;
Donnelly, Peter ;
Eichler, Evan E. ;
Flicek, Paul ;
Gabriel, Stacey B. ;
Gibbs, Richard A. ;
Green, Eric D. ;
Hurles, Matthew E. ;
Knoppers, Bartha M. ;
Korbel, Jan O. ;
Lander, Eric S. ;
Lee, Charles ;
Lehrach, Hans ;
Mardis, Elaine R. ;
Marth, Gabor T. ;
McVean, Gil A. ;
Nickerson, Deborah A. ;
Schmidt, Jeanette P. ;
Sherry, Stephen T. ;
Wang, Jun ;
Wilson, Richard K. ;
Gibbs, Richard A. ;
Dinh, Huyen ;
Kovar, Christie ;
Lee, Sandra ;
Lewis, Lora ;
Muzny, Donna ;
Reid, Jeff ;
Wang, Min ;
Wang, Jun ;
Fang, Xiaodong ;
Guo, Xiaosen ;
Jian, Min ;
Jiang, Hui ;
Jin, Xin ;
Li, Guoqing ;
Li, Jingxiang ;
Li, Yingrui ;
Li, Zhuo ;
Liu, Xiao ;
Lu, Yao ;
Ma, Xuedi ;
Su, Zhe ;
Tai, Shuaishuai ;
Tang, Meifang .
NATURE, 2012, 491 (7422) :56-65
[4]  
[Anonymous], CANC EPIDEMIOL BIOMA
[5]  
[Anonymous], GENETIC EPIDEMIOLOGY
[6]  
[Anonymous], MIST I PROGRAM SET B
[7]  
[Anonymous], 2016, GXESCAN PROGRAM DETE
[8]  
[Anonymous], QUANTO 1 2 COMPUTER
[9]   A perspective on interaction effects in genetic association studies [J].
Aschard, Hugues .
GENETIC EPIDEMIOLOGY, 2016, 40 (08) :678-688
[10]   Variation in Predictive Ability of Common Genetic Variants by Established Strata The Example of Breast Cancer and Age [J].
Aschard, Hugues ;
Zaitlen, Noah ;
Lindstrom, Sara ;
Kraft, Peter .
EPIDEMIOLOGY, 2015, 26 (01) :51-58