Positivity Preserving Rational Cubic Trigonometric Fractal Interpolation Functions

被引:0
|
作者
Chand, A. K. B. [1 ]
Tyada, K. R. [1 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Madras 600036, Tamil Nadu, India
来源
MATHEMATICS AND COMPUTING | 2015年 / 139卷
关键词
Iterated function systems; Fractal interpolation; Rational cubic trigonometric interpolation; Positivity; DATA VISUALIZATION; SCIENTIFIC-DATA;
D O I
10.1007/978-81-322-2452-5_13
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a family of l(1)-rational cubic trigonometric fractal interpolation function (RCTFIF) to preserve positivity inherent in a set of data. The proposed RCTFIF is a generalized fractal version of the classical rational cubic trigonometric polynomial spline of the form p(i)(theta)/q(i)(theta), where p(i) (theta) and q(i) (theta) are cubic trigonometric polynomials. The RCTFIF involves a scaling factor and four shape parameters in each subinterval. The convergence of the RCTFIF towards the original function is studied. We deduce the simple data dependent sufficient conditions on the scaling factors and shape parameters associated with the l(1)-RCTFIF so that the proposed RCTFIF preserves the positivity property of the given positive data set. The first derivative of the proposed RCTFIF is irregular in a finite or dense subset of the interpolation interval, and matches with the first derivative of the classical rational trigonometric cubic interpolation function whenever all scaling factors are zero. The effects of the scaling factors and shape parameters on the RCTFIF and its first derivative are illustrated graphically.
引用
收藏
页码:187 / 202
页数:16
相关论文
共 50 条
  • [1] Shape preserving rational cubic trigonometric fractal interpolation functions
    Tyada, K. R.
    Chand, A. K. B.
    Sajid, M.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 190 : 866 - 891
  • [2] CONSTRAINED SHAPE PRESERVING RATIONAL CUBIC FRACTAL INTERPOLATION FUNCTIONS
    Chand, A. K. B.
    Tyada, K. R.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (01) : 75 - 105
  • [3] Positivity Preserving Interpolation of Positive Data by Cubic Trigonometric Spline
    Abbas, Muhammad
    Abd Majid, Ahmad
    Ali, Jamaludin Md.
    MATEMATIKA, 2011, 27 (01) : 41 - 50
  • [4] Positivity and Stability of Rational Cubic Fractal Interpolation Surfaces
    Nallapu, Vijender
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (03)
  • [5] Positivity and Stability of Rational Cubic Fractal Interpolation Surfaces
    Vijender Nallapu
    Mediterranean Journal of Mathematics, 2018, 15
  • [6] Positivity Preserving Rational Cubic Ball Constrained Interpolation
    Tahat, Ayser Nasir Hassan
    Piah, Abd Rahni Mt
    Yahya, Zainor Ridzuan
    PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): GERMINATION OF MATHEMATICAL SCIENCES EDUCATION AND RESEARCH TOWARDS GLOBAL SUSTAINABILITY, 2014, 1605 : 331 - 336
  • [7] Positivity-Preserving Piecewise Rational Cubic Interpolation
    Hussain, Malik Zawwar
    Ali, Jamaludin Md.
    MATEMATIKA, 2006, 22 (02) : 147 - 153
  • [8] Positivity-Preserving Rational Cubic Fractal Interpolation Function Together with Its Zipper Form
    Sharma, Shamli
    Katiyar, Kuldip
    Sudhamsu, Gadug
    Wratch, Manjinder Kaur
    Salgotra, Rohit
    AXIOMS, 2024, 13 (09)
  • [9] Shape preserving rational cubic fractal interpolation function
    Balasubramani, N.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 319 : 277 - 295
  • [10] POSITIVITY PRESERVING INTERPOLATION BY USING RATIONAL CUBIC BALL SPLINE
    Karim, Samsul Ariffin Abdul
    JURNAL TEKNOLOGI, 2016, 78 (11): : 141 - 148