Wavelet bases in generalized Besov spaces

被引:32
作者
Almeida, A [1 ]
机构
[1] Univ Aveiro, Dept Matemat, P-3810193 Aveiro, Portugal
关键词
Besov spaces; generalized smoothness; real interpolation; wavelet representation; wavelet bases;
D O I
10.1016/j.jmaa.2004.09.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we obtain a wavelet representation in (inhomogeneous) Besov spaces of generalized smoothness via interpolation techniques. As consequence, we show that compactly supported wavelets of Daubechies type provide an unconditional Schauder basis in these spaces when the integrability parameters are finite. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:198 / 211
页数:14
相关论文
共 24 条
[1]  
[Anonymous], 1993, Ten Lectures of Wavelets
[2]  
Bergh J., 1976, INTERPOLATION SPACES
[3]  
Caetano A.M., 2004, TEXTOS MAT U COIMB B, V34, P37
[4]   Local growth envelopes of spaces of generalized smoothness: the subcritical case [J].
Caetano, AM ;
Moura, SD .
MATHEMATISCHE NACHRICHTEN, 2004, 273 :43-57
[5]  
CAETANO AM, LOCAL GROWTH ENVELOP
[6]  
COBOS F, 1988, LECT NOTES MATH, V1302, P158
[7]  
FARKAS W, IN PRESS ANN MAT PUR
[8]   DECOMPOSITION OF BESOV-SPACES [J].
FRAZIER, M ;
JAWERTH, B .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1985, 34 (04) :777-799
[9]   A DISCRETE TRANSFORM AND DECOMPOSITIONS OF DISTRIBUTION SPACES [J].
FRAZIER, M ;
JAWERTH, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 93 (01) :34-170
[10]  
Garrigós G, 2002, MATH NACHR, V239, P80, DOI 10.1002/1522-2616(200206)239:1<80::AID-MANA80>3.0.CO