The Empirical Likelihood for First-Order Random Coefficient Integer-Valued Autoregressive Processes

被引:37
作者
Zhang, Haixiang [1 ]
Wang, Dehui [1 ]
Zhu, Fukang [1 ]
机构
[1] Jilin Univ, Inst Math, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Asymptotic distribution; Conditional least squares; Hypothesis testing; INAR model; Maximum empirical likelihood; TIME-SERIES; CONFIDENCE-REGIONS; MODELS;
D O I
10.1080/03610920903443997
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article studies the empirical likelihood method for the first-order random coefficient integer-valued autoregressive process. The limiting distribution of the log empirical likelihood ratio statistic is established. Confidence region for the parameter of interest and its coverage probabilities are given, and hypothesis testing is considered. The maximum empirical likelihood estimator for the parameter is derived and its asymptotic properties are established. The performances of the estimator are compared with the conditional least squares estimator via simulation.
引用
收藏
页码:492 / 509
页数:18
相关论文
共 20 条
[1]  
Al-Osh M. A., 1987, Journal of Time Series Analysis, V8, P261, DOI [10.1111/j.1467-9892.1987.tb00438.x, DOI 10.1111/JTSA.1987.8.ISSUE-3]
[2]   1ST ORDER AUTOREGRESSIVE TIME-SERIES WITH NEGATIVE BINOMIAL AND GEOMETRIC MARGINALS [J].
ALOSH, MA ;
ALY, EEAA .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1992, 21 (09) :2483-2492
[3]  
Alzaid AA., 1988, Stat. Neerl, V42, P53, DOI [DOI 10.1111/J.1467-9574.1988.TB01521.X, 10.1111/j.1467-9574.1988.tb01521.x]
[4]  
Billingsley P., 1961, STAT INFERENCE MARKO
[5]   Empirical likelihood for GARCH models [J].
Chan, NH ;
Ling, SQ .
ECONOMETRIC THEORY, 2006, 22 (03) :403-428
[6]   An adaptive empirical likelihood test for parametric time series regression models [J].
Chen, Song Xi ;
Gao, Jiti .
JOURNAL OF ECONOMETRICS, 2007, 141 (02) :950-972
[7]   An empirical likelihood goodness-of-fit test for time series [J].
Chen, SX ;
Härdle, W ;
Li, M .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2003, 65 :663-678
[8]  
Chuang CS, 2002, STAT SINICA, V12, P387
[9]  
Hall P., 1980, Martingale Limit Theory and Its Application
[10]   Empirical likelihood methods with weakly dependent processes [J].
Kitamura, Y .
ANNALS OF STATISTICS, 1997, 25 (05) :2084-2102