Exact solution in terms of elliptic functions for the Burgers-Korteweg-de Vries equation

被引:27
作者
Feng, ZS [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
关键词
solitary wave; exact solution; Burgers-KdV equation; elliptic function;
D O I
10.1016/S0165-2125(03)00023-4
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The Burgers-Korteweg-de Vries equation arises from many different physical contexts as a nonlinear model equation incorporating the effects of dispersion, dissipation and nonlinearity. In the present paper, we present a more general traveling wave solution to the Burgers-Korteweg-de Vries equation by applying an exact solution of an ordinary differential equation. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:109 / 115
页数:7
相关论文
共 37 条
[1]  
ABLOWITZ MJ, 1979, B MATH BIOL, V41, P835, DOI 10.1007/BF02462380
[2]  
Ablowitz MJ., 1981, SOLITONS INVERSE SCA, V4
[3]  
ABRAMOWITZ M, 1965, HDB MATH FUNTIONS
[4]  
[Anonymous], MATH PRACTICE THEORY
[5]   TRAVELING-WAVE SOLUTIONS TO THE KORTEWEG-DEVRIES-BURGERS EQUATION [J].
BONA, JL ;
SCHONBEK, ME .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1985, 101 :207-226
[6]   KORTEWEG-DE VRIES-BURGERS EQUATION [J].
CANOSA, J ;
GAZDAG, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1977, 23 (04) :393-403
[7]  
DAULETIYAROV KZ, 1984, ZH VYCHISL MAT MAT F, V24, P402
[8]   Modified extended tanh-function method for solving nonlinear partial differential equations [J].
Elwakil, SA ;
El-labany, SK ;
Zahran, MA ;
Sabry, R .
PHYSICS LETTERS A, 2002, 299 (2-3) :179-188
[9]   A new complex line soliton for the two-dimensional KdV-Burgers equation [J].
Fan, EG ;
Zhang, J ;
Hon, BYC .
PHYSICS LETTERS A, 2001, 291 (06) :376-380
[10]  
FENG Z, 1997, MATH PRAC THEORY, V27, P220