Exact solution in terms of elliptic functions for the Burgers-Korteweg-de Vries equation

被引:27
作者
Feng, ZS [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
关键词
solitary wave; exact solution; Burgers-KdV equation; elliptic function;
D O I
10.1016/S0165-2125(03)00023-4
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The Burgers-Korteweg-de Vries equation arises from many different physical contexts as a nonlinear model equation incorporating the effects of dispersion, dissipation and nonlinearity. In the present paper, we present a more general traveling wave solution to the Burgers-Korteweg-de Vries equation by applying an exact solution of an ordinary differential equation. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:109 / 115
页数:7
相关论文
共 37 条
  • [1] ABLOWITZ MJ, 1979, B MATH BIOL, V41, P835, DOI 10.1007/BF02462380
  • [2] Ablowitz MJ., 1981, SOLITONS INVERSE SCA, V4
  • [3] ABRAMOWITZ M, 1965, HDB MATH FUNTIONS
  • [4] [Anonymous], MATH PRACTICE THEORY
  • [5] TRAVELING-WAVE SOLUTIONS TO THE KORTEWEG-DEVRIES-BURGERS EQUATION
    BONA, JL
    SCHONBEK, ME
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1985, 101 : 207 - 226
  • [6] KORTEWEG-DE VRIES-BURGERS EQUATION
    CANOSA, J
    GAZDAG, J
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1977, 23 (04) : 393 - 403
  • [7] DAULETIYAROV KZ, 1984, ZH VYCHISL MAT MAT F, V24, P402
  • [8] Modified extended tanh-function method for solving nonlinear partial differential equations
    Elwakil, SA
    El-labany, SK
    Zahran, MA
    Sabry, R
    [J]. PHYSICS LETTERS A, 2002, 299 (2-3) : 179 - 188
  • [9] A new complex line soliton for the two-dimensional KdV-Burgers equation
    Fan, EG
    Zhang, J
    Hon, BYC
    [J]. PHYSICS LETTERS A, 2001, 291 (06) : 376 - 380
  • [10] FENG Z, 1997, MATH PRAC THEORY, V27, P220