3D Printing of Regenerated Silk Fibroin and Antibody-Containing Microstructures via Multiphoton Lithography

被引:39
|
作者
Dickerson, Matthew B. [1 ]
Dennis, Patrick B. [1 ]
Tondiglia, Vincent P. [1 ]
Nadeau, Lloyd J. [1 ]
Singh, Kristi M. [1 ]
Drummy, Lawrence F. [1 ]
Partlow, Benjamin P. [2 ]
Brown, Dean P. [1 ]
Omenetto, Fiorenzo G. [2 ]
Kaplan, David L. [2 ]
Naik, Rajesh R. [3 ]
机构
[1] Air Force Res Lab, Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USA
[2] Tufts Univ, Biomed Engn Dept, Medford, MA 02155 USA
[3] Air Force Res Lab, Human Performance Wing 711, Wright Patterson AFB, OH 45433 USA
来源
关键词
silk; fibroin; multiphoton lithography; hydrogel; IgG; DIRECT-WRITE; CROSS-LINKING; ELECTRONIC DEVICES; DRUG-DELIVERY; PROTEIN; FABRICATION; MICROFABRICATION; SCAFFOLDS; STABILIZATION; HYDROGELS;
D O I
10.1021/acsbiomaterials.7b00338
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Regenerated silk fibroin, a biopolymer derived from silkworm cocoons, is a versatile material that has been widely explored for a number of applications (e.g., drug delivery, tissue repair, biocompatible electronics substrates, and optics) due to its attractive biochemical properties and processability. Here, we report on the free-form printing of silk-based, 3D microstructures through multiphoton lithography. Utilizing multiphoton lithography in conjunction with specific photoinitiator chemistry and postprint cross-linking, a number of microarchitectures were achieved including self-supporting fibroin arches. Further, the straightforward production of high fidelity and biofunctional protein architectures was enabled through the printing of aqueous fibroin/immunoglobulin solutions.
引用
收藏
页码:2064 / 2075
页数:12
相关论文
共 50 条
  • [31] 3D Printing Silk Fibroin/Hydroxyapatite/Sodium Alginate Composite Scaffolds for Bone Tissue Engineering
    Xu, Zhenyu
    Li, Ke
    Zhou, Kui
    Li, Shuiyuan
    Chen, Hongwei
    Zeng, Jiaqi
    Hu, Rugang
    FIBERS AND POLYMERS, 2023, 24 (01) : 275 - 283
  • [32] Silk Fibroin Bioink for 3D Printing in Tissue Regeneration: Controlled Release of MSC extracellular Vesicles
    Bari, Elia
    Di Gravina, Giulia Maria
    Scocozza, Franca
    Perteghella, Sara
    Frongia, Benedetta
    Tengattini, Sara
    Segale, Lorena
    Torre, Maria Luisa
    Conti, Michele
    PHARMACEUTICS, 2023, 15 (02)
  • [33] Porous 3-D scaffolds from regenerated Antheraea pernyi silk fibroin
    Li, Mingzhong
    Tao, Wei
    Lu, Shenzhou
    Zhao, Chunxia
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2008, 19 (03) : 207 - 212
  • [34] 3D printing with silk: considerations and applications
    DeBari, Megan K.
    Keyser, Mia N.
    Bai, Michelle A.
    Abbott, Rosalyn D.
    CONNECTIVE TISSUE RESEARCH, 2020, 61 (02) : 163 - 173
  • [35] Multiphoton Lithography of Organic Semiconductor Devices for 3D Printing of Flexible Electronic Circuits, Biosensors, and Bioelectronics
    Dadras-Toussi, Omid
    Khorrami, Milad
    Louis Sam Titus, Anto Sam Crosslee
    Majd, Sheereen
    Mohan, Chandra
    Abidian, Mohammad Reza
    ADVANCED MATERIALS, 2022, 34 (30)
  • [36] Microstructures to Control Elasticity in 3D Printing
    Schumacher, Christian
    Bickel, Bernd
    Rys, Jan
    Marschner, Steve
    Daraio, Chiara
    Gross, Markus
    ACM TRANSACTIONS ON GRAPHICS, 2015, 34 (04):
  • [37] Comparative Study of Silk Fibroin-Based Hydrogels and Their Potential as Material for 3-Dimensional (3D) Printing
    Pudkon, Watcharapong
    Laomeephol, Chavee
    Damrongsakkul, Siriporn
    Kanokpanont, Sorada
    Ratanavaraporn, Juthamas
    MOLECULES, 2021, 26 (13):
  • [38] Characterization of silk fibroin 3D composites modified by collagen
    Sionkowska, A.
    Lewandowska, K.
    Michalska, M.
    Walczak, M.
    JOURNAL OF MOLECULAR LIQUIDS, 2016, 215 : 323 - 327
  • [39] Fabrication of 3D microstructures using grayscale lithography
    Lima, Frederico
    Khazi, Isman
    Mescheder, Ulrich
    Tungal, Alok C.
    Muthiah, Uma
    ADVANCED OPTICAL TECHNOLOGIES, 2019, 8 (3-4) : 181 - 193
  • [40] 3D bioprinted silk fibroin hydrogels for tissue engineering
    Kim, Soon Hee
    Hong, Heesun
    Ajiteru, Olatunji
    Sultan, Md Tipu
    Lee, Young Jin
    Lee, Ji Seung
    Lee, Ok Joo
    Lee, Hanna
    Park, Hae Sang
    Choi, Kyu Young
    Lee, Joong Seob
    Ju, Hyung Woo
    Hong, In-Sun
    Park, Chan Hum
    NATURE PROTOCOLS, 2021, 16 (12) : 5484 - 5532