3D Printing of Regenerated Silk Fibroin and Antibody-Containing Microstructures via Multiphoton Lithography

被引:39
|
作者
Dickerson, Matthew B. [1 ]
Dennis, Patrick B. [1 ]
Tondiglia, Vincent P. [1 ]
Nadeau, Lloyd J. [1 ]
Singh, Kristi M. [1 ]
Drummy, Lawrence F. [1 ]
Partlow, Benjamin P. [2 ]
Brown, Dean P. [1 ]
Omenetto, Fiorenzo G. [2 ]
Kaplan, David L. [2 ]
Naik, Rajesh R. [3 ]
机构
[1] Air Force Res Lab, Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USA
[2] Tufts Univ, Biomed Engn Dept, Medford, MA 02155 USA
[3] Air Force Res Lab, Human Performance Wing 711, Wright Patterson AFB, OH 45433 USA
来源
ACS BIOMATERIALS SCIENCE & ENGINEERING | 2017年 / 3卷 / 09期
关键词
silk; fibroin; multiphoton lithography; hydrogel; IgG; DIRECT-WRITE; CROSS-LINKING; ELECTRONIC DEVICES; DRUG-DELIVERY; PROTEIN; FABRICATION; MICROFABRICATION; SCAFFOLDS; STABILIZATION; HYDROGELS;
D O I
10.1021/acsbiomaterials.7b00338
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Regenerated silk fibroin, a biopolymer derived from silkworm cocoons, is a versatile material that has been widely explored for a number of applications (e.g., drug delivery, tissue repair, biocompatible electronics substrates, and optics) due to its attractive biochemical properties and processability. Here, we report on the free-form printing of silk-based, 3D microstructures through multiphoton lithography. Utilizing multiphoton lithography in conjunction with specific photoinitiator chemistry and postprint cross-linking, a number of microarchitectures were achieved including self-supporting fibroin arches. Further, the straightforward production of high fidelity and biofunctional protein architectures was enabled through the printing of aqueous fibroin/immunoglobulin solutions.
引用
收藏
页码:2064 / 2075
页数:12
相关论文
共 50 条
  • [1] 3D freeform printing of silk fibroin
    Rodriguez, Maria J.
    Dixon, Thomas A.
    Cohen, Eliad
    Huang, Wenwen
    Omenetto, Fiorenzo G.
    Kaplan, David L.
    ACTA BIOMATERIALIA, 2018, 71 : 379 - 387
  • [2] 3D Printing of Monolithic Proteinaceous Cantilevers Using Regenerated Silk Fibroin
    Mu, Xuan
    Gonzalez-Obeso, Constancio
    Xia, Zhiyu
    Sahoo, Jugal Kishore
    Li, Gang
    Cebe, Peggy
    Zhang, Yu Shrike
    Kaplan, David L.
    MOLECULES, 2022, 27 (07):
  • [3] 3D Printing of Silk Fibroin for Biomedical Applications
    Wang, Qiusheng
    Han, Guocong
    Yan, Shuqin
    Zhang, Qiang
    MATERIALS, 2019, 12 (03)
  • [4] Photo-Crosslinked Silk Fibroin for 3D Printing
    Mu, Xuan
    Sahoo, Jugal Kishore
    Cebe, Peggy
    Kaplan, David L.
    POLYMERS, 2020, 12 (12) : 1 - 18
  • [5] 3D Printing of Hierarchical Silk Fibroin Structures
    Sommer, Marianne R.
    Schaffner, Manuel
    Carnelli, Davide
    Studart, Andre R.
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (50) : 34677 - 34685
  • [6] Antheraea pernyi silk fibroin bioinks for digital light processing 3D printing
    Zhang, Xue
    Wu, Wenbi
    Huang, Yulan
    Yang, Xiong
    Gou, Maling
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2023, 9 (05) : 239 - 257
  • [7] Multiphoton 3D lithography
    Skliutas, Edvinas
    Merkininkaite, Greta
    Maruo, Shoji
    Zhang, Wenxin
    Chen, Wenyuan
    Deng, Weiting
    Greer, Julia
    Freymann, Georg von
    Malinauskas, Mangirdas
    NATURE REVIEWS METHODS PRIMERS, 2025, 5 (01):
  • [8] Silk Fibroin-Based 3D Printing Strategies for Biomedical Applications br
    Gu, Xiaoxue
    Yu, Jing
    Yang, Mingying
    Shuai, Yajun
    PROGRESS IN CHEMISTRY, 2022, 34 (06) : 1359 - 1368
  • [9] Precisely Printable Silk Fibroin/Carboxymethyl Cellulose/Alginate Bioink for 3D Printing
    Nashchekina, Yuliya
    Militsina, Anastasia
    Elokhovskiy, Vladimir
    Ivan'kova, Elena
    Nashchekin, Alexey
    Kamalov, Almaz
    Yudin, Vladimir
    POLYMERS, 2024, 16 (08)
  • [10] Cell proliferation and migration in silk fibroin 3D scaffolds
    Mandal, Biman B.
    Kundu, Subhas C.
    BIOMATERIALS, 2009, 30 (15) : 2956 - 2965