Clothes-Changing Person Re-identification with RGB Modality Only

被引:89
作者
Gu, Xinqian [1 ,2 ]
Chang, Hong [1 ,2 ]
Ma, Bingpeng [2 ]
Bai, Shutao [1 ,2 ]
Shan, Shiguang [1 ,2 ]
Chen, Xilin [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
来源
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022) | 2022年
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
D O I
10.1109/CVPR52688.2022.00113
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The key to address clothes-changing person reidentification (re-id) is to extract clothes-irrelevant features, e.g., face, hairstyle, body shape, and gait. Most current works mainly focus on modeling body shape from multimodality information (e.g., silhouettes and sketches), but do not make full use of the clothes-irrelevant information in the original RGB images. In this paper, we propose a Clothes-based Adversarial Loss (CAL) to mine clothes-irrelevant features from the original RGB images by penalizing the predictive power of re-id model w.r.t. clothes. Extensive experiments demonstrate that using RGB images only, CAL outperforms all state-of-the-art methods on widely-used clothes-changing person re-id benchmarks. Besides, compared with images, videos contain richer appearance and additional temporal information, which can be used to model proper spatiotemporal patterns to assist clothes-changing re-id. Since there is no publicly available clothes-changing video re-id dataset, we contribute a new dataset named CCVID and show that there exists much room for improvement in modeling spatiotemporal information.
引用
收藏
页码:1050 / 1059
页数:10
相关论文
共 57 条
  • [1] [Anonymous], 2021, TMM, DOI DOI 10.1109/TMM.2020.3028461
  • [2] [Anonymous], 2018, CVPR, DOI DOI 10.1109/CVPR.2018.00016
  • [3] [Anonymous], 2018, CVPR, DOI DOI 10.1163/9789004385580002
  • [4] [Anonymous], 2006, IEEE Trans Pattern Anal Mach Intell, DOI DOI 10.1109/TPAMI.2006.38
  • [5] [Anonymous], CVPR
  • [6] [Anonymous], 2019, CVPR, DOI DOI 10.1109/CVPR.2019.00735
  • [7] [Anonymous], 2019, CVPR, DOI DOI 10.1109/CVPR.2019.00735
  • [8] [Anonymous], 2018, CVPR, DOI DOI 10.1109/CVPR.2018.00016
  • [9] Ariyanto Gunawan, 2012, ICB
  • [10] Bengio Y., 2009, P 26 ANN INT C MACHI, P41