Chaos-order transition in pure SU(2) Yang-Mills theory

被引:3
作者
Kaminaga, Y
Saito, Y
机构
[1] Gunma Natl Coll Technol, Dept Phys, Maebashi, Gumma 371, Japan
[2] Toho Univ, Sch Med, Dept Phys, Tokyo 143, Japan
关键词
chaos; gauge theory;
D O I
10.1016/S0370-2693(98)00282-2
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A chaos-order transition is found in the long wave limit of the classical pure SU(2) Yang-Mills theory in 2 + 1 dimensions. The discussion is based upon the estimation of the largest Lyapunov exponent and the power spectra. In our choice of a scale, the bifurcation parameter is the angular momentum M of the system. A pure regular phase occurs when \M\ greater than or equal to 3.6. A pure chaotic phase occurs when \M\ less than or equal to 1.7. In the intermediate region, regular/chaotic orbits have a fractal-like distribution in the phase space. (C) 1998 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:347 / 350
页数:4
相关论文
共 33 条
[1]   DYNAMICAL CHAOS IN SU(2) CIRCLE-TIMES-U (1) THEORY [J].
BERMAN, G ;
BULGAKOV, E ;
HOLM, D ;
KLUGER, Y .
PHYSICS LETTERS A, 1994, 194 (04) :251-264
[2]  
BERMAN GP, 1985, ZH EKSP TEOR FIZ, V61, P415
[3]  
BIRO TS, 1994, CHAOS GAUGE FIELD TH
[4]  
CHIRIKOV BV, 1981, JETP LETT+, V34, P163
[5]   MULTIFURCATIONS IN SU(2) YANG-MILLS THEORY [J].
FROYLAND, J .
PHYSICAL REVIEW D, 1983, 27 (04) :943-946
[6]   APPLICABILITY OF 3 INTEGRAL OF MOTION - SOME NUMERICAL EXPERIMENTS [J].
HENON, M ;
HEILES, C .
ASTRONOMICAL JOURNAL, 1964, 69 (01) :73-&
[7]   NON-INTEGRABILITY OF SU(2) YANG-MILLS AND YANG-MILLS-HIGGS SYSTEMS [J].
JOY, MP ;
SABIR, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (23) :5153-5159
[8]   CHAOTIC BEHAVIOR AND ORDER TO CHAOS TRANSITION OF THOOFT-POLYAKOV MONOPOLES [J].
JOY, MP ;
SABIR, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (13) :3721-3728
[9]  
KAMINAGA Y, UNPUB
[10]  
KAMINAGA Y, 1997, GUNMATECH9701