Classification of Mycobacterium tuberculosis in Images of ZN-Stained Sputum Smears

被引:64
作者
Khutlang, Rethabile [1 ]
Krishnan, Sriram [1 ]
Dendere, Ronald [1 ]
Whitelaw, Andrew [2 ]
Veropoulos, Konstantinos [3 ,4 ]
Learmonth, Genevieve [5 ]
Douglas, Tania S. [1 ]
机构
[1] Univ Cape Town, Dept Human Biol, Med Imaging Res Unit, MRC UCT, ZA-7701 Cape Town, South Africa
[2] Univ Cape Town, Dept Clin Lab Sci, Div Med Microbiol, ZA-7701 Cape Town, South Africa
[3] Guardian Technol Int Inc, Herndon, VA 20170 USA
[4] Gen Elect GE Healthcare, Med Syst Hellas, Hlth Safety & Environm Serv, Athens 16451, Greece
[5] Univ Cape Town, Dept Pathol, Div Anat Pathol, ZA-7701 Cape Town, South Africa
来源
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE | 2010年 / 14卷 / 04期
基金
美国国家卫生研究院;
关键词
Feature extraction; feature subset selection; microscopy; object classification; pixel classifiers; segmentation; tuberculosis (TB); Ziehl-Neelsen (ZN); AUTOMATIC IDENTIFICATION; CLASSIFIERS; MICROSCOPY; RECOGNITION; ALGORITHMS; BACTERIA; BACILLI; BRIGHT;
D O I
10.1109/TITB.2009.2028339
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Screening for tuberculosis (TB) in low- and middle-income countries is centered on the microscope. We present methods for the automated identification of Mycobacterium tuberculosis in images of Ziehl-Neelsen (ZN) stained sputum smears obtained using a bright-field microscope. We segment candidate bacillus objects using a combination of two-class pixel classifiers. The algorithm produces results that agree well with manual segmentations, as judged by the Hausdorff distance and the modified Williams index. The extraction of geometric-transformation-invariant features and optimization of the feature set by feature subset selection and Fisher transformation follow. Finally, different two-class object classifiers are compared. The sensitivity and specificity of all tested classifiers is above 95% for the identification of bacillus objects represented by Fisher-transformed features. Our results may be used to reduce technician involvement in screening for TB, and would be particularly useful in laboratories in countries with a high burden of TB, where, typically, ZN rather than auramine staining of sputum smears is the method of choice.
引用
收藏
页码:949 / 957
页数:9
相关论文
共 33 条
[21]  
LENSEIGNE B, 2007, P 4 IEEE S BIOM IM A, P85
[22]   Automatic detection of unstained viable cells in bright field images using a support vector machine with an improved training procedure [J].
Long, X ;
Cleveland, WL ;
Yao, YL .
COMPUTERS IN BIOLOGY AND MEDICINE, 2006, 36 (04) :339-362
[23]  
Meurie C, 2005, INT J ROBOT AUTOM, V20, P63, DOI 10.2316/Journal.206.2005.2.206-2780
[24]  
Meurie C., 2003, WSEAS Transactions on Computers, V2, P739
[25]   Moment invariants for recognition under changing viewpoint and illumination [J].
Mindru, F ;
Tuytelaars, T ;
Van Gool, L ;
Moons, T .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2004, 94 (1-3) :3-27
[26]   Fluorescence versus conventional sputum smear microscopy for tuberculosis: a systematic review [J].
R Steingart, Karen ;
Henry, Megan ;
Ng, Vivienne ;
Hopewell, Philip C. ;
Ramsay, Andrew ;
Cunningham, Jane ;
Urbanczik, Richard ;
Perkins, Mark ;
Aziz, Mohamed Abdel ;
Pai, Madhukar .
LANCET INFECTIOUS DISEASES, 2006, 6 (09) :570-581
[27]  
Sadaphal R, 2008, INT J TUBERC LUNG D, V12, P579
[28]  
SANTIAGOMOZOS R, 2008, P 5 IEEE S BIOM IM P, P1223
[29]   Fast branch & bound algorithms for optimal feature selection [J].
Somol, P ;
Pudil, P ;
Kittler, J .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (07) :900-912
[30]  
Van Deun A, 2002, INT J TUBERC LUNG D, V6, P222