Stochastic Heat Equation with Multiplicative Fractional-Colored Noise

被引:40
作者
Balan, Raluca M. [1 ]
Tudor, Ciprian A. [2 ]
机构
[1] Univ Ottawa, Dept Math & Stat, Ottawa, ON K1N 6N5, Canada
[2] Univ Paris 01, SAMOS MATISSE, Ctr Econ La Sorbonne, F-75634 Paris 13, France
基金
加拿大自然科学与工程研究理事会;
关键词
Stochastic heat equation; Gaussian noise; Multiple stochastic integrals; Chaos expansion; Skorohod integral; Fractional Brownian motion; Local time; DIFFERENTIAL-EQUATIONS; EVOLUTION-EQUATIONS; WAVE-EQUATION; DRIVEN;
D O I
10.1007/s10959-009-0237-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the stochastic heat equation with multiplicative noise u(t) = 1/2 Delta u + u(W) over dot in R+ x R-d, whose solution is interpreted in the mild sense. The noise (W) over dot is fractional in time (with Hurst index H >= 1/2), and colored in space (with spatial covariance kernel f). When H > 1/2, the equation generalizes the Ito-sense equation for H = 1/2. We prove that if f is the Riesz kernel of order alpha, or the Bessel kernel of order alpha < d, then the sufficient condition for the existence of the solution is d <= 2 + alpha (if H > 1/2), respectively d < 2 + alpha (if H = 1/2), whereas if f is the heat kernel or the Poisson kernel, then the equation has a solution for any d. We give a representation of the kth order moment of the solution in terms of an exponential moment of the "convoluted weighted" intersection local time of k independent d-dimensional Brownian motions.
引用
收藏
页码:834 / 870
页数:37
相关论文
共 36 条
[1]  
[Anonymous], 2003, Electronic Journal of Probability, DOI DOI 10.1214/EJP.V8-123
[2]  
Balan RM, 2008, ALEA-LAT AM J PROBAB, V4, P57
[3]  
BALAN RM, 2009, LATIN AM J IN PRESS
[4]  
Bayraktar E., 2004, INT J THEOR APPL FIN, V7, P615, DOI DOI 10.1142/S021902490400258X
[5]  
Billingsley Patrick, 1999, Convergence of probability measures, V2nd
[6]  
Billingsley Patrick, 1995, Probability and Measure
[7]   LINEAR STOCHASTIC DIFFERENTIAL-EQUATIONS AND WICK PRODUCTS [J].
BUCKDAHN, R ;
NUALART, D .
PROBABILITY THEORY AND RELATED FIELDS, 1994, 99 (04) :501-526
[8]   Tanaka formula for the fractional Brownian motion [J].
Coutin, L ;
Nualart, D ;
Tudor, CA .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2001, 94 (02) :301-315
[9]   Regularity of the sample paths of a class of second-order spde's [J].
Dalang, RC ;
Sanz-Solé, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 227 (02) :304-337
[10]  
Dalang RC, 1998, ANN PROBAB, V26, P187