Sphingolipid metabolism during Toll-like receptor 4 (TLR4)-mediated macrophage activation

被引:81
作者
Olona, Antoni [1 ]
Hateley, Charlotte [1 ]
Muralidharan, Sneha [2 ]
Wenk, Markus R. [3 ]
Torta, Federico [3 ]
Behmoaras, Jacques [1 ,4 ,5 ]
机构
[1] Imperial Coll London, Hammersmith Hosp, Fac Med, Du Cane Rd, London W12 0NN, England
[2] Natl Ctr Biol Sci, Bangalore, Karnataka, India
[3] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Biochem, SLING, Singapore, Singapore
[4] Duke NUS Med Sch Singapore, Programme Cardiovasc & Metab Disorders, Singapore, Singapore
[5] Duke NUS Med Sch Singapore, Ctr Computat Biol, Singapore, Singapore
基金
英国医学研究理事会;
关键词
fatty acid metabolism; lipidomics; LPS; macrophages; sphingolipids; TLR4; FATTY-ACID SYNTHESIS; LIPID RAFTS; GLYCOSPHINGOLIPID METABOLISM; INFLAMMASOME ACTIVATION; RAW264.7; MACROPHAGES; DENDRITIC CELL; LIPOPOLYSACCHARIDE; CERAMIDE; LPS; GANGLIOSIDES;
D O I
10.1111/bph.15642
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Macrophage activation in response to stimulation of Toll-like receptor 4 (TLR4) provides a paradigm for investigating energy metabolism that regulates the inflammatory response. TLR4-mediated pro-inflammatory macrophage activation is characterized by increased glycolysis and altered mitochondrial metabolism, supported by selective amino acid uptake and/or usage. Fatty acid metabolism remains as a highly complex rewiring that accompanies classical macrophage activation. TLR4 activation leads to de novo synthesis of fatty acids, which flux into sphingolipids, complex lipids that form the building blocks of eukaryotic cell membranes and regulate cell function. Here, we review the importance of TLR4-mediated de novo synthesis of membrane sphingolipids in macrophages. We first highlight fatty acid metabolism during TLR4-driven macrophage immunometabolism. We then focus on the temporal dynamics of sphingolipid biosynthesis and emphasize the modulatory role of some sphingolipid species (i.e. sphingomyelins, ceramides and glycosphingolipids) on the pro-inflammatory and pro-resolution phases of LPS/TLR4 activation in macrophages.
引用
收藏
页码:4575 / 4587
页数:13
相关论文
共 148 条
[1]   Metabolic characterisation of THP-1 macrophage polarisation using LC-MS-based metabolite profiling [J].
Abuawad, Alaa ;
Mbadugha, Chidimma ;
Ghaemmaghami, Amir M. ;
Kim, Dong-Hyun .
METABOLOMICS, 2020, 16 (03)
[2]   Toll-like receptors in the induction of the innate immune response [J].
Aderem, A ;
Ulevitch, RJ .
NATURE, 2000, 406 (6797) :782-787
[3]   Glycosphingolipids and Infection. Potential New Therapeutic Avenues [J].
Aerts, Johannes M. F. G. ;
Artola, M. ;
van Eijk, M. ;
Ferraz, M. J. ;
Boot, R. G. .
FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2019, 7
[4]   Neutral sphingomyelinase 2 regulates inflammatory responses in monocytes/macrophages induced by TNF-α [J].
Al-Rashed, Fatema ;
Ahmad, Zunair ;
Thomas, Reeby ;
Melhem, Motasem ;
Snider, Ashley J. ;
Obeid, Lina M. ;
Al-Mulla, Fahd ;
Hannun, Yusuf A. ;
Ahmad, Rasheed .
SCIENTIFIC REPORTS, 2020, 10 (01)
[5]   THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors [J].
Alexander, Stephen P. H. ;
Christopoulos, Arthur ;
Davenport, Anthony P. ;
Kelly, Eamonn ;
Mathie, Alistair ;
Peters, John A. ;
Veale, Emma L. ;
Armstrong, Jane F. ;
Faccenda, Elena ;
Harding, Simon D. ;
Pawson, Adam J. ;
Sharman, Joanna L. ;
Southan, Christopher ;
Davies, Jamie A. ;
Arumugam, Thiruma V. ;
Bennett, Andrew ;
Sjogren, Benita ;
Sobey, Christopher ;
Wong, Szu Shen ;
Abbracchio, Maria P. ;
Alexander, Wayne ;
Al-hosaini, Khaled ;
Back, Magnus ;
Beaulieu, Jean-Martin ;
Bernstein, Kenneth E. ;
Bettler, Bernhard ;
Birdsall, Nigel J. M. ;
Blaho, Victoria ;
Bousquet, Corinne ;
Brauner-Osborne, Hans ;
Burnstock, Geoffrey ;
Calo, Girolamo ;
Castano, Justo P. ;
Catt, Kevin J. ;
Ceruti, Stefania ;
Chazot, Paul ;
Chiang, Nan ;
Chun, Jerold ;
Cianciulli, Antonia ;
Clapp, Lucie H. ;
Couture, Rejean ;
Csaba, Zsolt ;
Dent, Gordon ;
Singh, Khuraijam Dhanachandra ;
Douglas, Steven D. ;
Dournaud, Pascal ;
Eguchi, Satoru ;
Escher, Emanuel ;
Filardo, Edward ;
Fong, Tung M. .
BRITISH JOURNAL OF PHARMACOLOGY, 2019, 176 :S21-S141
[6]  
Amtmann E, 2003, DRUG EXP CLIN RES, V29, P5
[7]   Mammalian iron metabolism and its control by iron regulatory proteins [J].
Anderson, Cole P. ;
Shen, Macy ;
Eisenstein, Richard S. ;
Leibold, Elizabeth A. .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2012, 1823 (09) :1468-1483
[8]   Sphingomyelin distribution in lipid rafts of artificial monolayer membranes visualized by Raman microscopy [J].
Ando, Jun ;
Kinoshita, Masanao ;
Cui, Jin ;
Yamakoshi, Hiroyuki ;
Dodo, Kosuke ;
Fujita, Katsumasa ;
Murata, Michio ;
Sodeoka, Mikiko .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (15) :4558-4563
[9]   Subcellular organelle lipidomics in TLR-4-activated macrophages [J].
Andreyev, Alexander Y. ;
Fahy, Eoin ;
Guan, Ziqiang ;
Kelly, Samuel ;
Li, Xiang ;
McDonald, Jeffrey G. ;
Milne, Stephen ;
Myers, David ;
Park, Hyejung ;
Ryan, Andrea ;
Thompson, Bonne M. ;
Wang, Elaine ;
Zhao, Yihua ;
Brown, H. Alex ;
Merrill, Alfred H. ;
Raetz, Christian R. H. ;
Russell, David W. ;
Subramaniam, Shankar ;
Dennis, Edward A. .
JOURNAL OF LIPID RESEARCH, 2010, 51 (09) :2785-2797
[10]   New Insights on the Role of Lipid Metabolism in the Metabolic Reprogramming of Macrophages [J].
Batista-Gonzalez, Ana ;
Vidal, Roberto ;
Criollo, Alfredo ;
Carreno, Leandro J. .
FRONTIERS IN IMMUNOLOGY, 2020, 10