Existence of periodic solutions of a scalar functional differential equation via a fixed point theorem

被引:18
作者
Zhang, Weipeng [1 ]
Zhu, Deming [1 ]
Bi, Ping [1 ]
机构
[1] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金;
关键词
periodic solution; functional differential equations; fixed point theorem;
D O I
10.1016/j.mcm.2006.12.026
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper is devoted to studying some new existence theorems for single and multiple positive periodic solutions to a scalar functional differential equation by combining some properties of Green's function together with a well-known nonzero fixed point theorem in cones. It improves and generalizes some related results in the literature. Finally, several examples and numerical simulations are given to dwell on the effectiveness of our results. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:718 / 729
页数:12
相关论文
共 23 条
[1]  
CHENG SS, 2001, ELECT J DIFFERENTIAL, P1
[2]   EXISTENCE OF PERIODIC-SOLUTIONS OF AUTONOMOUS FUNCTIONAL DIFFERENTIAL EQUATIONS [J].
CHOW, SN .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1974, 15 (02) :350-378
[3]  
Deimling K., 2010, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
[4]   Optimal harvesting policy for single population with periodic coefficients [J].
Fan, M ;
Wang, K .
MATHEMATICAL BIOSCIENCES, 1998, 152 (02) :165-177
[5]   PERIODIC-SOLUTIONS OF SINGLE-SPECIES MODELS WITH PERIODIC DELAY [J].
FREEDMAN, HI ;
WU, JH .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (03) :689-701
[6]   Almost periodic solutions of Lasota-Wazewska-type delay differential equation [J].
Gopalsamy, K ;
Trofimchuk, SI .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 237 (01) :106-127
[7]  
GOPALSAMY K, 1994, B I MATH ACAD SINICA, P341
[8]   NICHOLSON BLOWFLIES REVISITED [J].
GURNEY, WSC ;
BLYTHE, SP ;
NISBET, RM .
NATURE, 1980, 287 (5777) :17-21
[9]  
Hale J. K., 1977, Applied Mathematical Sciences, V3
[10]  
Jiang D., 1999, CHINESE ANN MATH A, V20, P715