Steady state of the KPZ equation on an interval and Liouville quantum mechanics

被引:13
作者
Barraquand, Guillaume [1 ]
Le Doussal, Pierre [1 ]
机构
[1] Univ Paris, Lab Phys, Ecole Normale Super, ENS,CNRS,Univ PSL,Sorbonne Univ, 24 Rue Lhomond, F-75231 Paris, France
关键词
BROWNIAN-MOTION; RENORMALIZATION; DIFFUSION; POLYMERS; PARTICLE; MODEL;
D O I
10.1209/0295-5075/ac25a9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We obtain a simple formula for the stationary measure of the height field evolving according to the Kardar-Parisi-Zhang equation on the interval [0, L] with general Neumann-type boundary conditions and any interval size. This is achieved using the recent results of Corwin and Knizel (arXiv:2103.12253) together with Liouville quantum mechanics. Our formula allows to easily determine the stationary measure in various limits: KPZ fixed point on an interval, half-line KPZ equation, KPZ fixed point on a half-line, as well as the Edwards-Wilkinson equation on an interval. Copyright (C) 2022 EPLA
引用
收藏
页数:7
相关论文
共 49 条
  • [1] INVARIANT-MEASURES FOR THE ZERO RANGE PROCESS
    ANDJEL, ED
    [J]. ANNALS OF PROBABILITY, 1982, 10 (03) : 525 - 547
  • [2] [Anonymous], 2016, ARXIV170100018
  • [3] Sachdev-Ye-Kitaev model as Liouville quantum mechanics
    Bagrets, Dmitry
    Altland, Alexander
    Kamenev, Alex
    [J]. NUCLEAR PHYSICS B, 2016, 911 : 191 - 205
  • [4] PFAFFIAN SCHUR PROCESSES AND LAST PASSAGE PERCOLATION IN A HALF-QUADRANT
    Baik, Jinho
    Barraquand, Guillaume
    Corwin, Ivan
    Suidan, Toufic
    [J]. ANNALS OF PROBABILITY, 2018, 46 (06) : 3015 - 3089
  • [5] Barraquand G., 2021, ARXIV210408234
  • [6] Half-Space Stationary Kardar-Parisi-Zhang Equation
    Barraquand, Guillaume
    Krajenbrink, Alexandre
    Le Doussal, Pierre
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2020, 181 (04) : 1149 - 1203
  • [7] Stochastic burgers and KPZ equations from particle systems
    Bertini, L
    Giacomin, G
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 183 (03) : 571 - 607
  • [8] Betea D., 2020, ARXIV201210337
  • [9] Directed random polymers via nested contour integrals
    Borodin, Alexei
    Bufetov, Alexey
    Corwin, Ivan
    [J]. ANNALS OF PHYSICS, 2016, 368 : 191 - 247
  • [10] CLASSICAL DIFFUSION OF A PARTICLE IN A ONE-DIMENSIONAL RANDOM FORCE-FIELD
    BOUCHAUD, JP
    COMTET, A
    GEORGES, A
    LEDOUSSAL, P
    [J]. ANNALS OF PHYSICS, 1990, 201 (02) : 285 - 341