Gamma-Ray Burst Progenitors

被引:88
作者
Levan, Andrew [1 ]
Crowther, Paul [2 ]
de Grijs, Richard [3 ,4 ,5 ]
Langer, Norbert [6 ]
Xu, Dong [7 ,8 ,9 ]
Yoon, Sung-Chul [10 ]
机构
[1] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[2] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England
[3] Peking Univ, Kavli Inst Astron & Astrophys, Yi He Yuan Lu 5, Beijing 100871, Peoples R China
[4] Peking Univ, Dept Astron, Yi He Yuan Lu 5, Beijing 100871, Peoples R China
[5] Int Space Sci Inst Beijing, 1 Nanertiao, Beijing 100190, Peoples R China
[6] Univ Bonn, Argelander Inst Astron, Hugel 71, D-53121 Bonn, Germany
[7] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark
[8] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China
[9] Chinese Acad Sci, Key Lab Space Astron & Technol, Natl Astron Observ, 20A Datun Rd, Beijing 100012, Peoples R China
[10] Seoul Natl Univ, Dept Phys & Astron, Gwanak Ro 1, Seoul 151742, South Korea
基金
英国科学技术设施理事会; 中国国家自然科学基金; 新加坡国家研究基金会;
关键词
Gamma-ray burst: general; Supernovae: general; CORE-COLLAPSE SUPERNOVAE; SPACE-TELESCOPE OBSERVATIONS; CLUSTER NGC 1818; X-RAY; HOST GALAXIES; MASSIVE STARS; NEUTRON-STAR; BLACK-HOLE; LIGHT CURVES; SUPERLUMINOUS SUPERNOVAE;
D O I
10.1007/s11214-016-0312-x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We review our current understanding of the progenitors of both long and short duration gamma-ray bursts (GRBs). Constraints can be derived from multiple directions, and we use three distinct strands; (i) direct observations of GRBs and their host galaxies, (ii) parameters derived from modelling, both via population synthesis and direct numerical simulation and (iii) our understanding of plausible analog progenitor systems observed in the local Universe. From these joint constraints, we describe the likely routes that can drive massive stars to the creation of long GRBs, and our best estimates of the scenarios that can create compact object binaries which will ultimately form short GRBs, as well as the associated rates of both long and short GRBs. We further discuss how different the progenitors may be in the case of black hole engine or millisecond-magnetar models for the production of GRBs, and how central engines may provide a unifying theme between many classes of extremely luminous transient, from luminous and super-luminous supernovae to long and short GRBs.
引用
收藏
页码:33 / 78
页数:46
相关论文
共 260 条
[1]   Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors [J].
Abadie, J. ;
Abbott, B. P. ;
Abbott, R. ;
Abernathy, M. ;
Accadia, T. ;
Acerneseac, F. ;
Adams, C. ;
Adhikari, R. ;
Ajith, P. ;
Allen, B. ;
Allen, G. ;
Ceron, E. Amador ;
Amin, R. S. ;
Anderson, S. B. ;
Anderson, W. G. ;
Antonuccia, F. ;
Aoudiaa, S. ;
Arain, M. A. ;
Araya, M. ;
Aronsson, M. ;
Arun, K. G. ;
Aso, Y. ;
Aston, S. ;
Astonea, P. ;
Atkinson, D. E. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Baker, P. ;
Ballardin, G. ;
Ballmer, S. ;
Barker, D. ;
Barnum, S. ;
Baroneac, F. ;
Barr, B. ;
Barriga, P. ;
Barsotti, L. ;
Barsuglia, M. ;
Barton, M. A. ;
Bartos, I. ;
Bassiri, R. ;
Bastarrika, M. ;
Bauchrowitz, J. ;
Bauera, Th S. ;
Behnke, B. ;
Beker, M. G. ;
Benacquista, M. ;
Bertolini, A. ;
Betzwieser, J. ;
Beveridge, N. .
CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (17)
[2]   Observation of Gravitational Waves from a Binary Black Hole Merger [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Arain, M. A. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. .
PHYSICAL REVIEW LETTERS, 2016, 116 (06)
[3]   ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914 [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. ;
Barr, B. .
ASTROPHYSICAL JOURNAL LETTERS, 2016, 818 (02)
[4]  
Abbott B.P., 2016, ARXIV E PRINTS
[5]   Extremely energetic Fermi gamma-ray bursts obey spectral energy correlations [J].
Amati, L. ;
Frontera, F. ;
Guidorzi, C. .
ASTRONOMY & ASTROPHYSICS, 2009, 508 (01) :173-180
[6]   Progenitor mass constraints for core-collapse supernovae from correlations with host galaxy star formation [J].
Anderson, J. P. ;
Habergham, S. M. ;
James, P. A. ;
Hamuy, M. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 424 (02) :1372-1391
[7]   A Hubble Space Telescope survey of the host galaxies of Superluminous Supernovae [J].
Angus, C. R. ;
Levan, A. J. ;
Perley, D. A. ;
Tanvir, N. R. ;
Lyman, J. D. ;
Stanway, E. R. ;
Fruchter, A. S. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 458 (01) :84-104
[8]  
[Anonymous], ARXIV E PRINTS
[9]  
[Anonymous], 2004, Handbook of Pulsar Astronomy
[10]  
[Anonymous], ARXIV E PRINTS