Vortex families near a spectral edge in the Gross-Pitaevskii equation with a two-dimensional periodic potential

被引:2
作者
Dohnal, Tomas [1 ]
Pelinovsky, Dmitry [2 ]
机构
[1] Karlsruhe Inst Technol, Fak Math, DE-76131 Karlsruhe, Germany
[2] McMaster Univ, Dept Math, Hamilton, ON L8S 4K1, Canada
来源
PHYSICAL REVIEW E | 2012年 / 85卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
NONLINEAR ELLIPTIC PROBLEM; CONTINUOUS APPROXIMATION; GAP SOLITONS; BREATHERS; EXISTENCE;
D O I
10.1103/PhysRevE.85.026605
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We examine numerically vortex families near band edges of the Bloch wave spectrum for the Gross-Pitaevskii equation with two-dimensional periodic potentials and for the discrete nonlinear Schrodinger equation. We show that besides vortex families that terminate at a small distance from the band edges via fold bifurcations, there exist vortex families that are continued all the way to the band edges.
引用
收藏
页数:6
相关论文
共 22 条
[1]   ON MATHEMATICAL MODELS FOR BOSE-EINSTEIN CONDENSATES IN OPTICAL LATTICES [J].
Aftalion, Amandine ;
Helffer, Bernard .
REVIEWS IN MATHEMATICAL PHYSICS, 2009, 21 (02) :229-278
[2]   From non-local gap solitary waves to bound states in periodic media [J].
Akylas, T. R. ;
Hwang, Guenbo ;
Yang, Jianke .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 468 (2137) :116-135
[3]   Continuous approximation of breathers in one- and two-dimensional DNLS lattices [J].
Bambusi, D. ;
Penati, T. .
NONLINEARITY, 2010, 23 (01) :143-157
[4]   Existence and continuous approximation of small amplitude breathers in 1D and 2D Klein-Gordon lattices [J].
Bambusi, Dario ;
Paleari, Simone ;
Penati, Tiziano .
APPLICABLE ANALYSIS, 2010, 89 (09) :1313-1334
[5]   Coupled mode equations and gap solitons for the 2D Gross-Pitaevskii equation with a non-separable periodic potential [J].
Dohnal, Tomas ;
Uecker, Hannes .
PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (9-10) :860-879
[6]   Coupled-Mode Equations and Gap Solitons in a Two-Dimensional Nonlinear Elliptic Problem with a Separable Periodic Potential [J].
Dohnal, Tomas ;
Pelinovsky, Dmitry ;
Schneider, Guido .
JOURNAL OF NONLINEAR SCIENCE, 2009, 19 (02) :95-131
[7]   EXISTENCE AND BIFURCATION OF SOLUTIONS FOR NONLINEAR PERTURBATIONS OF THE PERIODIC SCHRODINGER-EQUATION [J].
HEINZ, HP ;
KUPPER, T ;
STUART, CA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 100 (02) :341-354
[8]   Gap solitons and their linear stability in one-dimensional periodic media [J].
Hwang, Guenbo ;
Akylas, T. R. ;
Yang, Jianke .
PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (12) :1055-1068
[9]   BAND-EDGE SOLITONS, NONLINEAR SCHRODINGER/GROSS-PITAEVSKII EQUATIONS, AND EFFECTIVE MEDIA [J].
Ilan, B. ;
Weinstein, M. I. .
MULTISCALE MODELING & SIMULATION, 2010, 8 (04) :1055-1101
[10]  
Keller H.B., 1977, Applications of Bifurcation Theory, P359