The theory of cyclic voltammetry of electrochemically heterogeneous surfaces: comparison of different models for surface geometry and applications to highly ordered pyrolytic graphite

被引:30
作者
Ward, Kristopher R. [1 ]
Lawrence, Nathan S. [2 ]
Hartshorne, R. Seth [2 ]
Compton, Richard G. [1 ]
机构
[1] Univ Oxford, Dept Chem, Phys & Theoret Chem Lab, Oxford OX1 3QZ, England
[2] Schlumberger Cambridge Res Ctr, Cambridge CB3 0EL, England
关键词
LINEAR SWEEP VOLTAMMETRY; PARTIALLY BLOCKED ELECTRODES; MICRODISK ELECTRODES; ARRAYS; BASAL; MICROELECTRODES;
D O I
10.1039/c2cp40412e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The cyclic voltammetry at electrodes composed of multiple electroactive materials, where zones of one highly active material are distributed over a substrate of a second, less active material, is investigated by simulation. The two materials are assumed to differ in terms of their electrochemical rate constants towards any given redox couple. For a one-electron oxidation or reduction, the effect on voltammetry of the size and relative surface coverages of the zones as well as the rate constant of the slower zone are considered for systems where it is much slower than the rate constant of the faster zones. The occurrence of split peak cyclic voltammetry where two peaks are observed in the forward sweep, is studied in terms of the diffusional effects present in the system. A number of surface geometries are compared: specifically the more active zones are modelled as long, thin bands, as steps in the surface, as discs, and as rings (similar to a partially blocked electrode). Similar voltammetry for the band, step and ring models is seen but the disc geometry shows significant differences. Finally, the simulation technique is applied to the modelling of highly-ordered pyrolytic graphite (HOPG) surface and experimental conditions under which it may be possible to observe split peak voltammetry are predicted.
引用
收藏
页码:7264 / 7275
页数:12
相关论文
共 27 条
[1]   CHARGE-TRANSFER AT PARTIALLY BLOCKED SURFACES - A MODEL FOR THE CASE OF MICROSCOPIC ACTIVE AND INACTIVE SITES [J].
AMATORE, C ;
SAVEANT, JM ;
TESSIER, D .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1983, 147 (1-2) :39-51
[2]  
[Anonymous], 2007, Numerical Recipes
[3]   Edge plane pyrolytic graphite electrodes in electroanalysis: An overview [J].
Banks, CE ;
Compton, RG .
ANALYTICAL SCIENCES, 2005, 21 (11) :1263-1268
[4]   Investigation of modified basal plane pyrolytic graphite electrodes: definitive evidence for the electrocatalytic properties of the ends of carbon nanotubes [J].
Banks, CE ;
Moore, RR ;
Davies, TJ ;
Compton, RG .
CHEMICAL COMMUNICATIONS, 2004, (16) :1804-1805
[5]   Computational and experimental study of the cyclic voltammetry response of partially blocked electrodes. Part 1. Nonoverlapping, uniformly distributed blocking systems [J].
Brookes, BA ;
Davies, TJ ;
Fisher, AC ;
Evans, RG ;
Wilkins, SJ ;
Yunus, K ;
Wadhawan, JD ;
Compton, RG .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (07) :1616-1627
[6]   OBSERVATION AND CHARACTERIZATION BY SCANNING TUNNELING MICROSCOPY OF STRUCTURES GENERATED BY CLEAVING HIGHLY ORIENTED PYROLYTIC-GRAPHITE [J].
CHANG, HP ;
BARD, AJ .
LANGMUIR, 1991, 7 (06) :1143-1153
[7]   ANOMALOUSLY SLOW-ELECTRON TRANSFER AT ORDERED GRAPHITE-ELECTRODES - INFLUENCE OF ELECTRONIC FACTORS AND REACTIVE SITES [J].
CLINE, KK ;
MCDERMOTT, MT ;
MCCREERY, RL .
JOURNAL OF PHYSICAL CHEMISTRY, 1994, 98 (20) :5314-5319
[8]  
Compton RG., 2018, UNDERSTANDING VOLTAM, DOI [DOI 10.1142/Q0155, DOI 10.1142/6430, 10.1142/q0155]
[9]   Voltammetry at spatially heterogeneous electrodes [J].
Davies, TJ ;
Banks, CE ;
Compton, RG .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2005, 9 (12) :797-808
[10]   Nanotrench arrays reveal insight into graphite electrochemistry [J].
Davies, TJ ;
Hyde, ME ;
Compton, RG .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (32) :5121-5126