Conditions for instantaneous support shrinking and sharp estimates for the support of the solution of the Cauchy problem for a doubly non-linear parabolic equation with absorption

被引:4
作者
Degtyarev, S. P. [1 ]
机构
[1] NAS Ukraine, Inst Appl Math & Mech, Donetsk, Ukraine
关键词
D O I
10.1070/SM2008v199n04ABEH003931
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Instantaneous support shrinking is studied for a doubly nonlinear degenerate parabolic equation in the case of slow diffusion when, in general, the Cauchy initial data are Radon measures. For a non-negative solution, a necessary and sufficient condition for instantaneous support shrinking is obtained in terms of the local behaviour of the mass of the initial data. In the same terms, estimates are obtained for the size of the support, that are sharp with respect to order.
引用
收藏
页码:511 / 538
页数:28
相关论文
共 24 条
[1]   Instantaneous shrinking of the support of solutions to a nonlinear degenerate parabolic equation [J].
Abdullaev, UG .
MATHEMATICAL NOTES, 1998, 63 (3-4) :285-292
[3]   A Fujita type result for a degenerate Neumann problem in domains with noncompact boundary [J].
Andreucci, D ;
Tedeev, AF .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 231 (02) :543-567
[4]  
Andreucci D., 2001, INTERFACE FREE BOUND, V3, P233
[5]  
Andreucci D, 2005, ADV DIFFERENTIAL EQU, V10, P89
[6]  
ANTONCEV SN, 1981, SOV MATH DOKL, V24, P420
[7]  
Antontsev S.N., 1995, ANN FS TOULOUSE MATH, VIV, P5, DOI 10.5802/afst.790
[8]  
Antontsev SN, 2002, APPL MECH REV, V48
[9]   STABILIZATION OF SOLUTIONS OF A DEGENERATE NON-LINEAR DIFFUSION PROBLEM [J].
ARONSON, D ;
CRANDALL, MG ;
PELETIER, LA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1982, 6 (10) :1001-1022
[10]  
BERNIS F, 1986, P ROY SOC EDINB A, V104, P1