Inflammatory mediators convert anandamide into a potent activator of the vanilloid type 1 transient receptor potential receptor in nociceptive primary sensory neurons

被引:70
作者
Tahim, AS
Sántha, P
Nagy, I
机构
[1] Univ London Imperial Coll Sci Technol & Med, Div Surg Oncol, Fac Med, Chelsea & Westminster Hosp, London SW10 9NH, England
[2] Univ Szeged, Fac Med, Dept Physiol, H-6720 Szeged, Hungary
关键词
capsaicin; heat hyperalgesia; inflammation; nociception; pain; TRPV1;
D O I
10.1016/j.neuroscience.2005.08.005
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The enclogenous ligand, anandamide activates at least two receptors on nociceptors; the excitatory vanillold type 1 transient receptor potential receptor, the activity of which is indispensable for the development and maintenance of inflammatory heat hyperalgesia, and the inhibitory cannabinold 1 receptor, the activity of which reduces that pathological pain sensation. Recent data are equivocal on whether increasing anandamide levels at the peripheral terminals of nociceptors in pathological conditions increases or decreases inflammatory heat hyperalgesia. Here, by using the cobalt-uptake technique we examined whether vanilloid type I transient receptor potential receptor activity evoked by 10 nM-100 mu M anandamide is increased or decreased in inflammatory conditions. An inflammatory milieu for cultured rat primary sensory neurons was established by incubating the cells in the presence of the inflammatory mediators, bradykinin and prostaglandin E-2. Anandamide, similarly to the archetypical vanilloid type 1 transient receptor potential receptor agonist, capsaicin induced concentration-dependent cobalt-uptake in a proportion of neurons. However, the potency of anandamide was, significantly lower than that of capsaicin. While pre-incubation of cultures with bradykinin and prostaglandin E2 alone did not evoke cobalt-entry, the inflammatory mediators potentiated the effect of both capsaicin and anandamide. Application of the competitive vanilloid type 1 transient receptor potential receptor antagonist, capsazepine, or inhibitors of protein kinase A, protein kinase C or phospholipase C inhibited the anandamide-evoked cobalt-uptake both in the presence and absence of bradykinin and prostaglandin E2. These findings show that inflammatory mediators significantly increase the excitatory potency and efficacy of anandamide on vanilloid type I transient receptor potential receptor, thus, increasing the anandamide concentration in, or around the peripheral terminals of nociceptors might rather evoke than decrease inflammatory heat hyperalgesia. (c) 2005 Published by Elsevier Ltd on behalf of IBRO.
引用
收藏
页码:539 / 548
页数:10
相关论文
共 65 条
[1]   Cannabinoid 1 receptors are expressed in nociceptive primary sensory neurons [J].
Ahluwalia, J ;
Urban, L ;
Capogna, M ;
Bevan, S ;
Nagy, I .
NEUROSCIENCE, 2000, 100 (04) :685-688
[2]   Anandamide regulates neuropeptide release from capsaicin-sensitive primary sensory neurons by activating both the cannabinoid 1 receptor and the vanilloid receptor 1 in vitro [J].
Ahluwalia, J ;
Urban, L ;
Bevan, S ;
Nagy, I .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2003, 17 (12) :2611-2618
[3]   RETRACTED: Activation of capsaicin-sensitive primary sensory neurones induces anandamide production and release (Retracted Article) [J].
Ahluwalia, J ;
Yaqoob, M ;
Urban, L ;
Bevan, S ;
Nagy, I .
JOURNAL OF NEUROCHEMISTRY, 2003, 84 (03) :585-591
[4]   Anandamide is able to inhibit trigeminal neurons using an in vivo model of trigeminovascular-mediated nociception [J].
Akerman, S ;
Kaube, H ;
Goadsby, PJ .
JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 2004, 309 (01) :56-63
[5]   cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor (VR1) by direct phosphorylation [J].
Bhave, G ;
Zhu, WG ;
Wang, HB ;
Brasier, DJ ;
Oxford, GS ;
Gereau, RW .
NEURON, 2002, 35 (04) :721-731
[6]   Prostanoids and prostanoid receptors in signal transduction [J].
Bos, CL ;
Richel, DJ ;
Ritsema, T ;
Peppelenbosch, MP ;
Versteeg, HH .
INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2004, 36 (07) :1187-1205
[7]  
BURGESS GM, 1989, J NEUROSCI, V9, P3314
[8]   Impaired nociception and pain sensation in mice lacking the capsaicin receptor [J].
Caterina, MJ ;
Leffler, A ;
Malmberg, AB ;
Martin, WJ ;
Trafton, J ;
Petersen-Zeitz, KR ;
Koltzenburg, M ;
Basbaum, AI ;
Julius, D .
SCIENCE, 2000, 288 (5464) :306-313
[9]   The capsaicin receptor: a heat-activated ion channel in the pain pathway [J].
Caterina, MJ ;
Schumacher, MA ;
Tominaga, M ;
Rosen, TA ;
Levine, JD ;
Julius, D .
NATURE, 1997, 389 (6653) :816-824
[10]   A novel heat-activated current in nociceptive neurons and its sensitization by bradykinin [J].
Cesare, P ;
McNaughton, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (26) :15435-15439