Full idempotents in Leavitt path algebras

被引:0
作者
Emre, Ekrem [1 ]
机构
[1] Duzce Univ, Dept Math, Konuralp Campus, TR-81620 Duzce, Turkey
关键词
Full idempotent; Leavitt path algebra; restriction graph; Morita invariant property; source elimination;
D O I
10.1142/S0219498819500622
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give necessary and sufficient conditions on a directed graph E for which the associated Leavit path algebra L-K(E) has at least one full idempotent. Also, we define E-n, n >= 0 sub-graphs of E and show that L-K(E) has at least one full idempotent if and only if there is a sub-graph Er such that the associated Leavitt path algebra L-K(E-r) has at least one full idempotent.
引用
收藏
页数:10
相关论文
共 14 条
[1]  
Abrams G, 2008, HOUSTON J MATH, V34, P423
[2]   The Leavitt path algebra of a graph [J].
Abrams, G ;
Pino, GA .
JOURNAL OF ALGEBRA, 2005, 293 (02) :319-334
[3]  
Abrams G., 2017, LECT NOTES MATH, V2191
[4]   MORITA EQUIVALENCE FOR RINGS WITH LOCAL UNITS [J].
ABRAMS, GD .
COMMUNICATIONS IN ALGEBRA, 1983, 11 (08) :801-837
[5]   The socle series of a Leavitt path algebra [J].
Abrams, Gene ;
Rangaswamy, Kulumani M. ;
Siles Molina, Mercedes .
ISRAEL JOURNAL OF MATHEMATICS, 2011, 184 (01) :413-435
[6]   Flow invariants in the classification of Leavitt path algebras [J].
Abrams, Gene ;
Louly, Adel ;
Pardo, Enrique ;
Smith, Christopher .
JOURNAL OF ALGEBRA, 2011, 333 (01) :202-231
[7]   The exchange property for purely infinite simple rings [J].
Ara, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (09) :2543-2547
[8]   The ideal structure of the C*-algebras of infinite graphs [J].
Bates, T ;
Hong, JH ;
Raeburn, I ;
Szymanski, W .
ILLINOIS JOURNAL OF MATHEMATICS, 2002, 46 (04) :1159-1176
[9]   SUBSETS OF VERTICES GIVE MORITA EQUIVALENCES OF LEAVITT PATH ALGEBRAS [J].
Clark, Lisa Orloff ;
Huef, Astrid An ;
Luiten-Apirana, Pareoranga .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 96 (02) :212-222
[10]   Equivalent groupoids have Morita equivalent Steinberg algebras [J].
Clark, Lisa Orloff ;
Sims, Aidan .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (06) :2062-2075