Effects of sulfate-reducing bacteria on methylmercury at the sediment-water interface

被引:17
|
作者
Zeng, Lingxia [1 ]
Luo, Guangjun [1 ]
He, Tianrong [1 ]
Guo, Yanna [2 ]
Qian, Xiaoli [3 ]
机构
[1] Guizhou Univ, Key Lab Karst Environm & Geohazard Prevent, Guiyang 550003, Peoples R China
[2] Power China Guiyang Engn Corp Ltd, Guiyang 550081, Peoples R China
[3] Guizhou Univ, Sch Resources & Environm Engn, Guiyang 550003, Peoples R China
来源
JOURNAL OF ENVIRONMENTAL SCIENCES | 2016年 / 46卷
基金
中国国家自然科学基金;
关键词
Methyl mercury; Sediment-water interface; Microbial activity; Redox condition; Sulfate-reducing bacteria; MERCURY METHYLATION; AQUATIC ENVIRONMENT; SOUTHWESTERN CHINA; ANAEROBIC-BACTERIA; MARINE-SEDIMENTS; ORGANIC-MATTER; RESERVOIR; RIVER; LAKE; SPECIATION;
D O I
10.1016/j.jes.2016.05.018
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Sediment cores (containing sediment and overlying water) from Baihua Reservoir (SW China) were cultured under different redox conditions with different microbial activities, to understand the effects of sulfate-reducing bacteria (SRB) on mercury (Hg) methylation at sediment-water interfaces. Concentrations of dissolved methyl mercury (DMeHg) in the overlying water of the control cores with bioactivity maintained (BAC) and cores with only sulfate-reducing bacteria inhibited (SRBI) and bacteria fully inhibited (BACI) were measured at the anaerobic stage followed by the aerobic stage. For the BAC and SRBI cores, DMeHg concentrations in waters were much higher at the anaerobic stage than those at the aerobic stage, and they were negatively correlated to the dissolved oxygen concentrations (r =-0.5311 and r =-0.4977 for BAC and SRBI, respectively). The water DMeHg concentrations of the SRBI cores were 50% lower than those of the BAC cores, indicating that the SRB is of great importance in Hg methylation in sediment-water systems, but there should be other microbes such as iron-reducing bacteria and those containing specific gene cluster (hgcAB), besides SRB, causing Hg methylation in the sediment-water system. (C) 2016 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.
引用
收藏
页码:214 / 219
页数:6
相关论文
共 50 条
  • [21] Nitrate reduction in sulfate-reducing bacteria
    Marietou, Angeliki
    FEMS MICROBIOLOGY LETTERS, 2016, 363 (15)
  • [22] SULFATE-REDUCING BACTERIA AND IMMOBILIZATION OF METALS
    PERRY, KA
    MARINE GEORESOURCES & GEOTECHNOLOGY, 1995, 13 (1-2) : 33 - 39
  • [23] Effect mechanism of nutrients on pathogenic bacteria at the sediment-water interface in eutrophic water
    Wen, Sun
    Yang, Zhang
    Biao, Peng
    Jing, Wang
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2024, 12
  • [24] Abundance and Taxonomic Diversity of Bacteria Inhabiting the Sediment-Water Interface in a Marine Harbor Channel
    Perlinski, Piotr
    Mudryk, Zbigniew J.
    Zdanowicz, Marta
    OCEAN SCIENCE JOURNAL, 2019, 54 (03) : 407 - 418
  • [25] Reduction of molybdate by sulfate-reducing bacteria
    Keka C. Biswas
    Nicole A. Woodards
    Huifang Xu
    Larry L. Barton
    BioMetals, 2009, 22 : 131 - 139
  • [26] Effects of sulfate-reducing bacteria on the corrosion of Q235
    Li, Fushao
    An, Maozhong
    Duan, Dongxia
    ADVANCES IN CHEMICAL ENGINEERING, PTS 1-3, 2012, 396-398 : 1777 - +
  • [27] Effects of sulfate-reducing bacteria on the corrosion behavior of carbon steel
    Kuang, Fei
    Wang, Jia
    Yan, Li
    Zhang, Dun
    ELECTROCHIMICA ACTA, 2007, 52 (20) : 6084 - 6088
  • [28] Advances in heavy metal removal by sulfate-reducing bacteria
    Xu, Ya-Nan
    Chen, Yinguang
    WATER SCIENCE AND TECHNOLOGY, 2020, 81 (09) : 1797 - 1827
  • [29] Influence of sulfate reduction on fraction and regeneration of phosphorus at sediment-water interface of urban malodorous river
    Guan, Linchang
    Xia, Zhenyu
    Jin, Lili
    Xu, Yiwen
    He, Yan
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (09) : 11540 - 11548
  • [30] Monitoring of sulfate-reducing bacteria in acid water from uranium mines
    Benedetto, JS
    de Almeida, SK
    Gomes, HA
    Vazoller, RF
    Ladeira, ACQ
    MINERALS ENGINEERING, 2005, 18 (13-14) : 1341 - 1343