Combinatorics of the K-theory of affine Grassmannians

被引:5
作者
Morse, Jennifer [1 ]
机构
[1] Drexel Univ, Dept Math, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
Tableaux; Grothendieck polynomials; k-Schur functions; Affine Grassmannian; COHOMOLOGY;
D O I
10.1016/j.aim.2011.11.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a family of tableaux that simultaneously generalizes the tableaux used to characterize Grothendieck polynomials and k-Schur functions. We prove that the polynomials drawn from these tableaux are the affine Grothendieck polynomials and k-K-Schur functions - Schubert representatives for the K-theory of affine Grassmannians and their dual in the nil Hecke ring. We prove a number of combinatorial properties including Pieri rules. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2950 / 2984
页数:35
相关论文
共 27 条
  • [1] Bandlow J., ARXIV11061594
  • [2] Berthelot P., 1971, LECT NOTES SGA
  • [3] Buch A., 2002, ACTA MATH, V189, P36
  • [4] Demazure M., 1974, Ann. Sci. cole Norm. Sup, V4, P53, DOI [10.24033/asens.1261, DOI 10.24033/ASENS.1261]
  • [5] Noncommutative Schur functions and their applications
    Fomin, S
    Greene, C
    [J]. DISCRETE MATHEMATICS, 1998, 193 (1-3) : 179 - 200
  • [6] Fomin S., 1997, P 6 C FORM POW SER A, P183
  • [7] KOSTANT B, 1990, J DIFFER GEOM, V32, P549
  • [8] THE NIL HECKE RING AND COHOMOLOGY OF G/P FOR A KAC-MOODY GROUP-G
    KOSTANT, B
    KUMAR, S
    [J]. ADVANCES IN MATHEMATICS, 1986, 62 (03) : 187 - 237
  • [9] Lam T., 2011, MEM AM MATH SOC
  • [10] Lam T., KAPPA THEORY SCHUBER