Existence of solutions for a differential inclusion problem with singular coefficients involving the p(x)-Laplacian

被引:2
作者
Dai, Guowei [1 ]
Ma, Ruyun [1 ]
Ma, Qiaozhen [1 ]
机构
[1] NW Normal Univ, Dept Math, Lanzhou 730070, Peoples R China
来源
BOUNDARY VALUE PROBLEMS | 2012年
关键词
p(x)-Laplacian; differential inclusion; singularity; VARIABLE EXPONENT; CRITICAL-POINTS; SPACES; FUNCTIONALS; LEBESGUE;
D O I
10.1186/1687-2770-2012-11
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the non-smooth critical point theory we investigate the existence and multiplicity of solutions for a differential inclusion problem with singular coefficients involving the p(x)-Laplacian.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 39 条
[1]  
[Anonymous], 2003, Fract. Calc. Appl. Anal.
[2]  
[Anonymous], 2000, KODAI MATH J
[3]  
Antontsev S.N., 2006, Ann. Univ. Ferrara. Sez., VVII, P19, DOI [DOI 10.1007/S11565-006-0002-9, 10.1007/s11565-006-0002-9]
[4]   A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions [J].
Antontsev, SN ;
Shmarev, SI .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (03) :515-545
[5]  
Azorero JPG, 1998, J DIFFER EQUATIONS, V144, P441
[6]   VARIATIONAL-METHODS FOR NON-DIFFERENTIABLE FUNCTIONALS AND THEIR APPLICATIONS TO PARTIAL-DIFFERENTIAL EQUATIONS [J].
CHANG, KC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 80 (01) :102-129
[7]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406
[8]  
Clarke F. H., 1990, Optimization and Nonsmooth Analysis, DOI DOI 10.1137/1.9781611971309
[9]  
Dai G, 2012, ACTA MATH SCI A, V32, P1
[10]  
Dai G, 2012, ACTA MATH SCI A, V32, P18