Isogeometric Fatigue Damage Prediction in Large-Scale Composite Structures Driven by Dynamic Sensor Data

被引:81
|
作者
Bazilevs, Y. [1 ]
Deng, X. [1 ]
Korobenko, A. [1 ]
di Scalea, F. Lanza [1 ]
Todd, M. D. [1 ]
Taylor, S. G. [2 ]
机构
[1] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA
[2] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
来源
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME | 2015年 / 82卷 / 09期
基金
新加坡国家研究基金会;
关键词
fatigue damage; DDDAS; IGA; Kirchholl-Love shells; digital twin; REPRESENTATIVE VOLUME ELEMENTS; MODAL-ANALYSIS; PART II; MICROSTRUCTURES; SIMULATION; FRAMEWORK; SYSTEMS; MODELS;
D O I
10.1115/1.4030795
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, we combine recent developments in modeling of fatigue-damage, isogeometric analysis (IGA) of thin-shell structures, and structural health monitoring (SHIM) to develop a computational steering framework for fatigue-damage prediction in foil-scale laminated composite structures. The main constituents of' the proposed framework are described in detail, and the framework is deployed in the context of an actual fatigue test of a full-scale wind-turbine blade structure. The results indicate that using an advanced computational model informed by in situ SHM data leads to accurate prediction of the damage zone formation, damage progression, and eventual failure of the structure. Although the blade fatigue simulation was driven by test data obtained prior tel the computation, the proposed computational steering framework may be deployed concurrently with structures undergoing fatigue loading.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Data-driven digital twin framework for large-scale dynamic structures based on model reduction and damage regression identification
    Yang, Hanxu
    Yan, Bo
    Wu, Kaiwen
    Gao, Yingbo
    Deng, Huachao
    Lv, Zhongbin
    Zhang, Bo
    ENGINEERING STRUCTURES, 2025, 327
  • [2] Comparative Composite Fatigue Damage Models for Life Prediction of Laminated Composite Structures
    Fang, E.
    Cui, X.
    Lua, J.
    PROCEEDINGS OF THE AMERICAN SOCIETY FOR COMPOSITES: THIRTIETH TECHNICAL CONFERENCE, 2015, : 519 - 528
  • [3] Toward a Computational Steering Framework for Large-Scale Composite Structures Based on Continually and Dynamically Injected Sensor Data
    Bazilevs, Y.
    Marsden, A. L.
    di Scalea, F. Lanza
    Majumdar, A.
    Tatineni, M.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2012, 2012, 9 : 1149 - 1158
  • [4] Sparse data-driven wavefront prediction for large-scale adaptive optics
    Cerqueira, Paulo
    Piscaer, Pieter
    Verhaegen, Michel
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2021, 38 (07) : 992 - 1002
  • [5] Data-driven Authoring of Large-scale Ecosystems
    Kapp, Konrad
    Gain, James
    Guerin, Eric
    Galin, Eric
    Peytavie, Adrien
    ACM TRANSACTIONS ON GRAPHICS, 2020, 39 (06):
  • [6] Monitoring of Damage in Composite Structures Using an Optimized Sensor Network: A Data-Driven Experimental Approach
    Rucevskis, Sandris
    Rogala, Tomasz
    Katunin, Andrzej
    SENSORS, 2023, 23 (04)
  • [7] A damage model for the prediction of static and fatigue-driven delamination in composite laminates
    Donadon, Mauricio V.
    Lauda, Diogo P.
    JOURNAL OF COMPOSITE MATERIALS, 2015, 49 (16) : 1995 - 2007
  • [8] Application of a data-driven approach for maximum fatigue damage prediction of an unbonded flexible riser
    Dai, Tianjiao
    Zhang, Jiaxuan
    Ren, Chao
    Xing, Yihan
    Saevik, Svein
    Ye, Naiquan
    Jin, Xing
    Wu, Jun
    OCEAN ENGINEERING, 2024, 306
  • [9] Designing Parallel Data Processing for Large-Scale Sensor Orchestration
    Kabac, Milan
    Consel, Charles
    2016 INT IEEE CONFERENCES ON UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING AND COMMUNICATIONS, CLOUD AND BIG DATA COMPUTING, INTERNET OF PEOPLE, AND SMART WORLD CONGRESS (UIC/ATC/SCALCOM/CBDCOM/IOP/SMARTWORLD), 2016, : 57 - 65
  • [10] Data-driven modeling for fatigue loads of large-scale wind turbines under active power regulation
    Yang, Jian
    Zheng, Songyue
    Song, Dongran
    Su, Mei
    Yang, Xuebing
    Joo, Young Hoon
    WIND ENERGY, 2021, 24 (06) : 558 - 572