Stabilization of solitons in PT models with supersymmetry by periodic management

被引:61
作者
Driben, R. [1 ]
Malomed, B. A. [2 ]
机构
[1] Jerusalem Coll Engn, IL-91035 Jerusalem, Israel
[2] Tel Aviv Univ, Fac Engn, Sch Elect Engn, Dept Phys Elect, IL-69978 Tel Aviv, Israel
关键词
LASERS;
D O I
10.1209/0295-5075/96/51001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a system based on dual-core nonlinear waveguides with the balanced gain and loss acting separately in the cores. The system features a "supersymmetry" when the gain and loss are equal to the inter-core coupling. This system admits a variety of exact solutions (we focus on solitons), which are subject to a specific subexponential instability. We demonstrate that the application of a "management", in the form of periodic simultaneous switch of the sign of the gain, loss, and inter-core coupling, effectively stabilizes solitons, without destroying the supersymmetry. The management turns the solitons into attractors, for which an attraction basin is identified. The initial amplitude asymmetry and phase mismatch between the components transforms the solitons into quasi-stable breathers. Copyright (C) EPLA, 2011
引用
收藏
页数:5
相关论文
共 32 条
[1]   Solitons in PT-symmetric nonlinear lattices [J].
Abdullaev, Fatkhulla Kh. ;
Kartashov, Yaroslav V. ;
Konotop, Vladimir V. ;
Zezyulin, Dmitry A. .
PHYSICAL REVIEW A, 2011, 83 (04)
[2]   Stability and interactions of solitons in two-component active systems [J].
Atai, J ;
Malomed, BA .
PHYSICAL REVIEW E, 1996, 54 (04) :4371-4374
[3]   Making sense of non-Hermitian Hamiltonians [J].
Bender, Carl M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) :947-1018
[4]   Optical lattices with PT symmetry are not transparent [J].
Berry, M. V. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (24)
[5]   SOLITON DYNAMICS IN PERIODICALLY MODULATED DIRECTIONAL-COUPLERS [J].
CHU, PL ;
MALOMED, BA ;
PENG, GD ;
SKINNER, IM .
PHYSICAL REVIEW E, 1994, 49 (06) :5763-5767
[6]   Scattering of linear and nonlinear waves in a waveguide array with a PT-symmetric defect [J].
Dmitriev, Sergey V. ;
Suchkov, Sergey V. ;
Sukhorukov, Andrey A. ;
Kivshar, Yuri S. .
PHYSICAL REVIEW A, 2011, 84 (01)
[7]   Solitons in regular and random split-step systems [J].
Driben, R ;
Malomed, BA .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2003, 20 (11) :2338-2348
[8]   Theory of coupled optical PT-symmetric structures [J].
El-Ganainy, R. ;
Makris, K. G. ;
Christodoulides, D. N. ;
Musslimani, Ziad H. .
OPTICS LETTERS, 2007, 32 (17) :2632-2634
[9]   Soliton lasers stabilized by coupling to a resonant linear system [J].
Firth, W. J. ;
Paulau, P. V. .
EUROPEAN PHYSICAL JOURNAL D, 2010, 59 (01) :13-21
[10]   Observation of PT-Symmetry Breaking in Complex Optical Potentials [J].
Guo, A. ;
Salamo, G. J. ;
Duchesne, D. ;
Morandotti, R. ;
Volatier-Ravat, M. ;
Aimez, V. ;
Siviloglou, G. A. ;
Christodoulides, D. N. .
PHYSICAL REVIEW LETTERS, 2009, 103 (09)