An Engineered Microbial Platform for Direct Biofuel Production from Brown Macroalgae

被引:545
作者
Wargacki, Adam J. [1 ]
Leonard, Effendi [1 ]
Win, Maung Nyan [1 ]
Regitsky, Drew D. [1 ]
Santos, Christine Nicole S. [1 ]
Kim, Peter B. [1 ]
Cooper, Susan R. [1 ]
Raisner, Ryan M. [1 ]
Herman, Asael [1 ]
Sivitz, Alicia B. [1 ]
Lakshmanaswamy, Arun [1 ]
Kashiyama, Yuki [1 ,2 ,3 ]
Baker, David [4 ]
Yoshikuni, Yasuo [1 ]
机构
[1] Bio Architecture Lab, Berkeley, CA 94710 USA
[2] BAL Chile SA, Puerto Varas 5550658, Chile
[3] BAL Biofuels SA, Santiago 7550159, Chile
[4] Univ Washington, Dept Biochem, Seattle, WA 98195 USA
关键词
TUMEFACIENS STRAIN C58; ESCHERICHIA-COLI; ALGINATE LYASE; ERWINIA-CHRYSANTHEMI; ETHANOL-PRODUCTION; MOLECULAR-IDENTIFICATION; METABOLISM; BIOSYNTHESIS; CONSTRUCTION; PURIFICATION;
D O I
10.1126/science.1214547
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Prospecting macroalgae (seaweeds) as feedstocks for bioconversion into biofuels and commodity chemical compounds is limited primarily by the availability of tractable microorganisms that can metabolize alginate polysaccharides. Here, we present the discovery of a 36-kilo-base pair DNA fragment from Vibrio splendidus encoding enzymes for alginate transport and metabolism. The genomic integration of this ensemble, together with an engineered system for extracellular alginate depolymerization, generated a microbial platform that can simultaneously degrade, uptake, and metabolize alginate. When further engineered for ethanol synthesis, this platform enables bioethanol production directly from macroalgae via a consolidated process, achieving a titer of 4.7% volume/volume and a yield of 0.281 weight ethanol/weight dry macroalgae (equivalent to similar to 80% of the maximum theoretical yield from the sugar composition in macroalgae).
引用
收藏
页码:308 / 313
页数:6
相关论文
共 43 条
[1]   Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments [J].
Adams, Jessica M. ;
Gallagher, Joseph A. ;
Donnison, Iain S. .
JOURNAL OF APPLIED PHYCOLOGY, 2009, 21 (05) :569-574
[2]   Isoprenoid Pathway Optimization for Taxol Precursor Overproduction in Escherichia coli [J].
Ajikumar, Parayil Kumaran ;
Xiao, Wen-Hai ;
Tyo, Keith E. J. ;
Wang, Yong ;
Simeon, Fritz ;
Leonard, Effendi ;
Mucha, Oliver ;
Phon, Too Heng ;
Pfeifer, Blaine ;
Stephanopoulos, Gregory .
SCIENCE, 2010, 330 (6000) :70-74
[3]   Construction of lycopene-overproducing E-coli strains by combining systematic and combinatorial gene knockout targets [J].
Alper, H ;
Miyaoku, K ;
Stephanopoulos, G .
NATURE BIOTECHNOLOGY, 2005, 23 (05) :612-616
[4]   Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? [J].
Alper, Hal ;
Stephanopoulos, Gregory .
NATURE REVIEWS MICROBIOLOGY, 2009, 7 (10) :715-723
[5]   Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels [J].
Atsumi, Shota ;
Hanai, Taizo ;
Liao, James C. .
NATURE, 2008, 451 (7174) :86-U13
[6]   The oligogalacturonate-specific porin KdgM of Erwinia chrysanthemi belongs to a new porin family [J].
Blot, N ;
Berrier, C ;
Hugouvieux-Cotte-Pattat, N ;
Ghazi, A ;
Condemine, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (10) :7936-7944
[7]   Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways [J].
Bond-Watts, Brooks B. ;
Bellerose, Robert J. ;
Chang, Michelle C. Y. .
NATURE CHEMICAL BIOLOGY, 2011, 7 (04) :222-227
[8]   Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals [J].
Dellomonaco, Clementina ;
Clomburg, James M. ;
Miller, Elliot N. ;
Gonzalez, Ramon .
NATURE, 2011, 476 (7360) :355-U131
[9]  
Draget K. I., 2005, Polysaccharides and polyamides in the food industry: properties, production, and patents, P1
[10]   PURIFICATION AND CHARACTERIZATION OF THE RECOMBINANT ALGINATE LYASE FROM PSEUDOMONAS SP LEAKED BY ESCHERICHIA-COLI UPON ADDITION OF GLYCINE [J].
FUJIYAMA, K ;
MAKI, H ;
KINOSHITA, S ;
YOSHIDA, T .
FEMS MICROBIOLOGY LETTERS, 1995, 126 (01) :19-23