KAHLER-RICCI SOLITONS INDUCED BY INFINITE-DIMENSIONAL COMPLEX SPACE FORMS

被引:4
作者
Loi, Andrea [1 ]
Salis, Filippo [2 ]
Zuddas, Fabio [1 ]
机构
[1] Univ Cagliari, Dipartimento Matemat, Cagliari, Italy
[2] Politecn Torino, Dipartimento Sci Matemat, Turin, Italy
关键词
Kahler metric; Kahler-Ricci solitons; Einstein metrics; Calabi's diastasis function; complex space forms; IMMERSIONS; MANIFOLDS; SUBMANIFOLDS; UNIQUENESS;
D O I
10.2140/pjm.2022.316.183
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We exhibit families of nontrivial (i.e., not Kahler-Einstein) radial Kahler-Ricci solitons (KRS), both complete and not complete, which can be Kahler immersed into infinite-dimensional complex space forms. This shows that the triviality of a KRS induced by a finite-dimensional complex space form proved by Loi and Mossa (Proc. Amer. Math. Soc. 149:11 (2020), 4931-4941) does not hold when the ambient space is allowed to be infinite-dimensional. Moreover, we show that the radial potential of a radial KRS induced by a nonelliptic complex space form is necessarily defined at the origin.
引用
收藏
页码:183 / 205
页数:23
相关论文
共 25 条
[1]   CURVATURE IN HERMITIAN METRIC [J].
BOCHNER, S .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1947, 53 (02) :179-195
[2]   ISOMETRIC IMBEDDING OF COMPLEX MANIFOLDS [J].
CALABI, E .
ANNALS OF MATHEMATICS, 1953, 58 (01) :1-23
[3]  
Cao HD, 1996, ELLIPTIC AND PARABOLIC METHODS IN GEOMETRY, P1
[4]  
Chern S.-s., 1967, J. Differential Geometry, V1, P21
[5]  
Di Scala AJ, 2012, ASIAN J MATH, V16, P479
[6]  
Feldman M, 2003, J DIFFER GEOM, V65, P169
[7]   EINSTEIN COMPLETE INTERSECTIONS IN COMPLEX PROJECTIVE SPACE [J].
HANO, JI .
MATHEMATISCHE ANNALEN, 1975, 216 (03) :197-208
[8]   On holomorphic isometric immersions of nonhomogeneous Kahler-Einstein manifolds into the infinite dimensional complex projective space [J].
Hao, Yihong ;
Wang, An ;
Zhang, Liyou .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 423 (01) :547-560
[9]  
Hulin D., 2000, The Journal of Geometric Analysis, V10, P525
[10]  
Koiso N, 1990, Recent topics in differential and analytic geometry, volume18 of Adv. Stud. Pure Math., P327