Representations formulas for some differential games with asymmetric information

被引:6
作者
Cardaliaguet, P. [1 ]
机构
[1] Univ Brest, CNRS, UMR 6205, Math Lab, Brest, France
关键词
differential games; representation formulas; Hamilton-Jacobi equations; viscosity solutions;
D O I
10.1007/s10957-008-9377-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We compute the value of several two-player zero-sum differential games in which the players have an asymmetric information on the random terminal payoff.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 15 条
[1]   Convex viscosity solutions and state constraints [J].
Alvarez, O ;
Lasry, JM ;
Lions, PL .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (03) :265-288
[2]  
[Anonymous], 1994, MATH APPL
[3]  
[Anonymous], 1997, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations
[4]  
Aumann R., 1995, Repeated games with incomplete information
[5]   ON HOPF FORMULAS FOR SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
BARDI, M ;
EVANS, LC .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1984, 8 (11) :1373-1381
[6]   UNIQUENESS FOR 1ST-ORDER HAMILTON-JACOBI EQUATIONS AND HOPF FORMULA [J].
BARLES, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1987, 69 (03) :346-367
[7]   Differential games with asymmetric information [J].
Cardaliaguet, P. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2007, 46 (03) :816-838
[8]   VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) :1-42
[9]   Repeated games, duality and the Central Limit Theorem [J].
DeMeyer, B .
MATHEMATICS OF OPERATIONS RESEARCH, 1996, 21 (01) :237-251
[10]  
Evans LC, 1984, INDIANA U MATH J, V282, P487