Stability Analysis and Hopf Bifurcation Research for DNA Strand Displacement with Time delay

被引:1
作者
Liu, Yanhong [1 ]
Lv, Hui [1 ]
Zhou, Changjun [1 ]
Yin, Zhixiang [2 ]
Fang, Xianwen [2 ]
Zheng, Zhonglong [3 ]
Zhang, Qiang [1 ,4 ]
机构
[1] Dalian Univ, Minist Educ, Key Lab Adv Design & Intelligent Comp, Dalian, Peoples R China
[2] Anhui Univ Sci & Technol, Sch Math & Big Data, Huaian, Peoples R China
[3] Zhejiang Normal Univ, Coll Math Phys & Informat Engn, Jinhua, Peoples R China
[4] Dalian Univ Technol, Dept Comp Sci & Technol, Dalian, Peoples R China
来源
2018 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI) | 2018年
基金
中国国家自然科学基金;
关键词
time delay; nonlinear dynamic system; DNA strand displacement; local stability; Hopf bifurcation; PLATFORM; MODEL;
D O I
10.1109/SmartWorld.2018.00074
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, a nonlinear system with time delay mode for DNA strand displacement based on toehold exchange firstly is proposed. The boundedness of all the state variables of the DNA strand displacement system is proved. After that, local stability analysis is performed around the positive equilibrium point to obtain a necessary and sufficient condition for local stability, which depend on the coefficients of the characteristic equation corresponding to linearization of the system. In addition, the existence of the Hopf bifurcation is analyzed, which shows that the time delay parameter will guarantee that the system is stable within a certain range. However, Hopf bifurcation and chaos occur when the time delay parameter increases continuously and even exceeds the critical value. At last, numerical simulations have verified the correctness and validity of the DNA strand displacement studies.
引用
收藏
页码:228 / 233
页数:6
相关论文
共 28 条
  • [11] Parameter-dependent Lyapunov functional for stability of time-delay systems with polytopic-type uncertainties
    He, Y
    Wu, M
    She, JH
    Liu, GP
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (05) : 828 - 832
  • [12] Khalil H.K., 1996, Noninear Systems, V2, p5.1
  • [13] Bifurcation phenomena in non-smooth dynamical systems
    Leine, R. I.
    van Campen, D. H.
    [J]. EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2006, 25 (04) : 595 - 616
  • [14] Programmable motion of DNA origami mechanisms
    Marras, Alexander E.
    Zhou, Lifeng
    Su, Hai-Jun
    Castro, Carlos E.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (03) : 713 - 718
  • [15] Mu Y., 2017, NONLINEAR DYNAM, V90, P1
  • [16] Rugh W J., 1981, Nonlinear System Theory: The Volterra / Wiener Approach
  • [17] Stability and Hopf Bifurcation of a Diffusive Predator-Prey Model with Hyperbolic Mortality
    Sambath, Muniyagounder
    Balachandran, Krishnan
    Suvinthra, Murugan
    [J]. COMPLEXITY, 2016, 21 (S1) : 34 - 43
  • [18] Exploring the Feasibility of a DNA Computer: Design of an ALU Using Sticker-Based DNA Model
    Sarkar, Mayukh
    Ghosal, Prasun
    Mohanty, Saraju P.
    [J]. IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2017, 16 (06) : 383 - 399
  • [19] Intracellular Delivery of a Planar DNA Origami Structure by the Transferrin-Receptor Internalization Pathway
    Schaffert, David H.
    Okholm, Anders H.
    Sorensen, Rasmus S.
    Nielsen, Jesper S.
    Torring, Thomas
    Rosen, Christian B.
    Kodal, Anne Louise B.
    Mortensen, Michael R.
    Gothelf, Kurt V.
    Kjems, Jorgen
    [J]. SMALL, 2016, 12 (19) : 2634 - 2640
  • [20] DNA-Fueled Molecular Machine Enables Enzyme-Free Target Recycling Amplification for Electronic Detection of MicroRNA from Cancer Cells with Highly Minimized Background Noise
    Shi, Kai
    Dou, Baoting
    Yang, Cuiyun
    Chai, Yaqin
    Yuan, Ruo
    Xiang, Yun
    [J]. ANALYTICAL CHEMISTRY, 2015, 87 (16) : 8578 - 8583