Flat Optical Conductivity in ZrSiS due to Two-Dimensional Dirac Bands

被引:74
作者
Schilling, M. B. [1 ]
Schoop, L. M. [2 ]
Lotsch, B. V. [2 ]
Dressel, M. [1 ]
Pronin, A. V. [1 ]
机构
[1] Univ Stuttgart, Phys Inst, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
[2] Max Planck Inst Solid State Res, Heisenbergstr 1, D-70569 Stuttgart, Germany
关键词
GRAPHENE; FERMIONS;
D O I
10.1103/PhysRevLett.119.187401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
ZrSiS exhibits a frequency-independent interband conductivity sigma(omega) = constd (omega) equivalent to sigma(flat) in a broad range from 250 to 2500 cm(-1) (30-300 meV). This makes ZrSiS similar to (quasi-) two-dimensional Dirac electron systems, such as graphite and graphene. We assign the flat optical conductivity to the transitions between quasi-two-dimensional Dirac bands near the Fermi level. In contrast to graphene, sigma(flat) is not universal but related to the length of the nodal line in the reciprocal space, k(0). Because of spin-orbit coupling, the discussed Dirac bands in ZrSiS possess a small gap Delta, for which we determine an upper bound max(Delta) = 30 meV from our optical measurements. At low temperatures the momentum-relaxation rate collapses, and the characteristic length scale of momentum relaxation is of the order of microns below 50 K.
引用
收藏
页数:6
相关论文
共 59 条
  • [1] Electrodynamics on Fermi Cyclides in Nodal Line Semimetals
    Ahn, Seongjin
    Mele, E. J.
    Min, Hongki
    [J]. PHYSICAL REVIEW LETTERS, 2017, 119 (14)
  • [2] Butterfly magnetoresistance, quasi-2D Dirac Fermi surface and topological phase transition in ZrSiS
    Ali, Mazhar N.
    Schoop, Leslie M.
    Garg, Chirag
    Lippmann, Judith M.
    Lara, Erik
    Lotsch, Bettina
    Parkin, Stuart S. P.
    [J]. SCIENCE ADVANCES, 2016, 2 (12):
  • [3] Dynamical conductivity and zero-mode anomaly in honeycomb lattices
    Ando, T
    Zheng, YS
    Suzuura, H
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2002, 71 (05) : 1318 - 1324
  • [4] Armitage N. P., REV MOD PHY IN PRESS
  • [5] Low-frequency optical conductivity in graphene and in other scale-invariant two-band systems
    Bacsi, Adam
    Virosztek, Attila
    [J]. PHYSICAL REVIEW B, 2013, 87 (12)
  • [6] Negative local resistance caused by viscous electron backflow in graphene
    Bandurin, D. A.
    Torre, I.
    Kumar, R. Krishna
    Ben Shalom, M.
    Tomadin, A.
    Principi, A.
    Auton, G. H.
    Khestanova, E.
    Novoselov, K. S.
    Grigorieva, I. V.
    Ponomarenko, L. A.
    Geim, A. K.
    Polini, M.
    [J]. SCIENCE, 2016, 351 (6277) : 1055 - 1058
  • [7] Topological nodal-line fermions in spin-orbit metal PbTaSe2
    Bian, Guang
    Chang, Tay-Rong
    Sankar, Raman
    Xu, Su-Yang
    Zheng, Hao
    Neupert, Titus
    Chiu, Ching-Kai
    Huang, Shin-Ming
    Chang, Guoqing
    Belopolski, Ilya
    Sanchez, Daniel S.
    Neupane, Madhab
    Alidoust, Nasser
    Liu, Chang
    Wang, BaoKai
    Lee, Chi-Cheng
    Jeng, Horng-Tay
    Zhang, Chenglong
    Yuan, Zhujun
    Jia, Shuang
    Bansil, Arun
    Chou, Fangcheng
    Lin, Hsin
    Hasan, M. Zahid
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [8] Topological nodal semimetals
    Burkov, A. A.
    Hook, M. D.
    Balents, Leon
    [J]. PHYSICAL REVIEW B, 2011, 84 (23):
  • [9] Optical response of a line node semimetal
    Carbotte, J. P.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (04)
  • [10] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162