Automated Ehexahedral meshing of knee cartilage structures - application to data from the osteoarthritis initiative

被引:28
|
作者
Rodriguez-Vila, B. [1 ,2 ]
Sanchez-Gonzalez, P. [1 ,2 ]
Oropesa, I. [1 ]
Gomez, E. J. [1 ,2 ]
Pierce, D. M. [3 ,4 ]
机构
[1] Univ Politecn Madrid, Biomed Engn & Telemed Ctr, ETSI Telecomunicac, Ctr Biomed Technol, Madrid, Spain
[2] Networking Res Bioengn Biomat & Nanomed CIBER BBN, Madrid, Spain
[3] Univ Connecticut, Dept Mech Engn, Storrs, CT 06269 USA
[4] Univ Connecticut, Dept Biomed Engn, Storrs, CT 06269 USA
基金
美国国家科学基金会;
关键词
Cartilage; meniscus; knee joint; osteoarthritis; magnetic resonance imaging; finite element analysis; hexahedral mesh; ARTICULAR-CARTILAGE; FIBER ORIENTATIONS; GENERATION; MODEL;
D O I
10.1080/10255842.2017.1383984
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a fully automated methodology for hexahedral meshing of patient-specific structures of the human knee obtained from magnetic resonance images, i.e. femoral/tibial cartilages and menisci. We select eight patients from the Osteoarthritis Initiative and validate our methodology using MATLAB on a laptop computer. We obtain the patient-specific meshes in an average of three minutes, while faithfully representing the geometries with well-shaped elements. We hope to provide a fundamentally different means to test hypotheses on the mechanisms of disease progression by integrating our patient-specific FE meshes with data from individual patients. Download both our meshes and software at http://im.engr.uconn.edu/downloads.php.
引用
收藏
页码:1543 / 1553
页数:11
相关论文
共 50 条
  • [21] Conservatively treated knee injury is associated with knee cartilage matrix degeneration measured with MRI-based T2 relaxation times: data from the osteoarthritis initiative
    Hofmann, Felix C.
    Neumann, Jan
    Heilmeier, Ursula
    Joseph, Gabby B.
    Nevitt, Michael C.
    McCulloch, Charles E.
    Link, Thomas M.
    SKELETAL RADIOLOGY, 2018, 47 (01) : 93 - 106
  • [22] Diffuse tibiofemoral cartilage change prior to the development of accelerated knee osteoarthritis: Data from the osteoarthritis initiative
    Harkey, Matthew S.
    Davis, Julie E.
    Lu, Bing
    Price, Lori Lyn
    Eaton, Charles B.
    Lo, Grace H.
    Barbe, Mary F.
    Ward, Robert J.
    Zhang, Ming
    Liu, Shao-Hsien
    Lapane, Kate L.
    Mackay, James W.
    Mcalindon, Timothy E.
    Driban, Jeffrey B.
    CLINICAL ANATOMY, 2019, 32 (03) : 369 - 378
  • [23] Longitudinal MRI structural findings observed in accelerated knee osteoarthritis: data from the Osteoarthritis Initiative
    Foreman, Sarah C.
    Neumann, Jan
    Joseph, Gabby B.
    Nevitt, Michael C.
    McCulloch, Charles E.
    Lane, Nancy E.
    Link, Thomas M.
    SKELETAL RADIOLOGY, 2019, 48 (12) : 1949 - 1959
  • [24] Automatic knee cartilage and bone segmentation using multi-stage convolutional neural networks: data from the osteoarthritis initiative
    Anthony A. Gatti
    Monica R. Maly
    Magnetic Resonance Materials in Physics, Biology and Medicine, 2021, 34 : 859 - 875
  • [25] Associations between molecular biomarkers and MR-based cartilage composition and knee joint morphology: data from the Osteoarthritis Initiative
    Joseph, G. B.
    Nevitt, M. C.
    McCulloch, C. E.
    Neumann, J.
    Lynch, J. A.
    Heilmeier, U.
    Lane, N. E.
    Link, T. M.
    OSTEOARTHRITIS AND CARTILAGE, 2018, 26 (08) : 1070 - 1077
  • [26] Longitudinal MRI structural findings observed in accelerated knee osteoarthritis: data from the Osteoarthritis Initiative
    Sarah C. Foreman
    Jan Neumann
    Gabby B. Joseph
    Michael C. Nevitt
    Charles E. McCulloch
    Nancy E. Lane
    Thomas M. Link
    Skeletal Radiology, 2019, 48 : 1949 - 1959
  • [27] Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the Osteoarthritis Initiative
    Ambellan, Felix
    Tack, Alexander
    Ehlke, Moritz
    Zachow, Stefan
    MEDICAL IMAGE ANALYSIS, 2019, 52 : 109 - 118
  • [28] Conventional MRI-based subchondral trabecular biomarkers as predictors of knee osteoarthritis progression: data from the Osteoarthritis Initiative
    Pishgar, Farhad
    Guermazi, Ali
    Roemer, Frank W.
    Link, Thomas M.
    Demehri, Shadpour
    EUROPEAN RADIOLOGY, 2021, 31 (06) : 3564 - 3573
  • [29] Longitudinal Femoral Cartilage T2 Relaxation Time and Thickness Changes with Fast Sequential Radiographic Progression of Medial Knee Osteoarthritis-Data from the Osteoarthritis Initiative (OAI)
    Edd, Shannon N.
    Omoumi, Patrick
    Jolles, Brigitte M.
    Favre, Julien
    JOURNAL OF CLINICAL MEDICINE, 2021, 10 (06) : 1 - 13
  • [30] Automatic knee cartilage and bone segmentation using multi-stage convolutional neural networks: data from the osteoarthritis initiative
    Gatti, Anthony A.
    Maly, Monica R.
    MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2021, 34 (06) : 859 - 875