Molecular Basis of Chiral Acid Recognition by Candida rugosa Lipase: X-Ray Structure of Transition State Analog and Modeling of the Hydrolysis of Methyl 2-Methoxy-2-phenylacetate

被引:18
作者
Colton, Ian J. [1 ]
Yin, DeLu [2 ,3 ]
Grochulski, Pawel [4 ]
Kazlauskas, Romas J. [1 ,2 ,3 ]
机构
[1] McGill Univ, Dept Chem, Montreal, PQ H3A 2K6, Canada
[2] Univ Minnesota, Dept Biochem Mol Biol & Biophys, St Paul, MN 55108 USA
[3] Univ Minnesota, BioTechnol Inst, St Paul, MN 55108 USA
[4] Natl Res Council Canada, Biotechnol Res Inst, Montreal, PQ H4P 2R2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
carboxylic acids; enantioselectivity; enzyme catalysis; hydrolases; molecular dynamics; phosphonates; protein structures; transition-state analogs; X-ray diffraction; 2-ARYLPROPIONIC ESTERS; PSEUDOMONAS-CEPACIA; SECONDARY ALCOHOLS; CARBOXYLIC-ACIDS; FORCE-FIELD; ENANTIOSELECTIVITY; RESOLUTION; ENZYME; STEREOSPECIFICITY; CHEMISTRY;
D O I
10.1002/adsc.201100459
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Lipase from Candida rugosa shows high enantioselectivity toward alpha-substituted chiral acids such as 2-arylpropionic acids. To understand how Candida rugosa lipase (CRL) distinguishes between enantiomers of chiral acids, we determined the X-ray crystal structure of a transition-state analog covalently linked to CRL. CRL shows moderate enantioselectivity (E=23) toward methyl 2-methoxy-2-phenylacetate, 1-methyl ester, favoring the (S)-enantiomer. We synthesized phosphonate (R-C,RPSP)-3, which, upon reaction with CRL, mimics the transition state for hydrolysis of (S)-1-methyl ester, the fast-reacting enantiomer. An X-ray crystal structure of this complex shows a catalytically productive orientation with the phenyl ring in the hydrophobic tunnel of the lipase. Phe345 crowds the region near the substrate stereocenter. Computer modeling of the slow-reacting enantiomer examined four possible conformations for the corresponding slow-reacting enantiomer: three conformations where two substituents at the stereocenter have been exchanged relative to the fast-reacting enantiomer and one conformation with an umbrella-like inversion orientation. Each of these orientations disrupts the orientation of the catalytic histidine, but the molecular basis for disruption differs in each case showing that multiple mechanisms are required for high enantioselectivity.
引用
收藏
页码:2529 / 2544
页数:16
相关论文
共 45 条
[1]   ENANTIOSELECTIVITY OF CANDIDA-RUGOSA LIPASE TOWARD CARBOXYLIC-ACIDS - A PREDICTIVE RULE FROM SUBSTRATE MAPPING AND X-RAY CRYSTALLOGRAPHY [J].
AHMED, SN ;
KAZLAUSKAS, RJ ;
MORINVILLE, AH ;
GROCHULSKI, P ;
SCHRAG, JD ;
CYGLER, M .
BIOCATALYSIS, 1994, 9 (1-4) :209-225
[2]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[3]   Reversed enantiopreference of Candida rugosa lipase supports different modes of binding enantiomers of a chiral acyl donor [J].
Berglund, P ;
Holmquist, M ;
Hult, K .
JOURNAL OF MOLECULAR CATALYSIS B-ENZYMATIC, 1998, 5 (1-4) :283-287
[4]   ALCOHOLS AS ENANTIOSELECTIVE INHIBITORS IN A LIPASE-CATALYZED ESTERIFICATION OF A CHIRAL ACYL DONOR [J].
BERGLUND, P ;
HOLMQUIST, M ;
HULT, K ;
HOGBERG, HE .
BIOTECHNOLOGY LETTERS, 1995, 17 (01) :55-60
[5]   STEREOSPECIFICITY OF THE CHLORIDE-ION CHANNEL - THE ACTION OF CHIRAL CLOFIBRIC ACID ANALOGS [J].
BETTONI, G ;
LOIODICE, F ;
TORTORELLA, V ;
CONTECAMERINO, D ;
MAMBRINI, M ;
FERRANNINI, E ;
BRYANT, SH .
JOURNAL OF MEDICINAL CHEMISTRY, 1987, 30 (08) :1267-1270
[6]   Probing the substrate specificity for lipases .2. Kinetic and modeling studies on the molecular recognition of 2-arylpropionic esters by Candida rugosa and Rhizomucor miehei lipases [J].
Botta, M ;
Cernia, E ;
Corelli, F ;
Manetti, F ;
Soro, S .
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEIN STRUCTURE AND MOLECULAR ENZYMOLOGY, 1997, 1337 (02) :302-310
[7]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[8]   A 2-PROPANOL TREATMENT INCREASES THE ENANTIOSELECTIVITY OF CANDIDA-RUGOSA LIPASE TOWARD ESTERS OF CHIRAL CARBOXYLIC-ACIDS [J].
COLTON, IJ ;
AHMED, SN ;
KAZLAUSKAS, RJ .
JOURNAL OF ORGANIC CHEMISTRY, 1995, 60 (01) :212-217
[9]   Understanding Candida rugosa lipases:: An overview [J].
de María, PD ;
Sánchez-Montero, JM ;
Sinisterra, JV ;
Alcántara, AR .
BIOTECHNOLOGY ADVANCES, 2006, 24 (02) :180-196
[10]   Features and development of Coot [J].
Emsley, P. ;
Lohkamp, B. ;
Scott, W. G. ;
Cowtan, K. .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2010, 66 :486-501