Fermat's little theorem and Euler's theorem in a class of rings

被引:1
作者
de Melo Hernandez, Fernanda D. [1 ]
Hernandez Melo, Cesar A. [1 ]
Tapia-Recillas, Horacio [2 ]
机构
[1] Univ Estadual Maringa, Dept Matemat, Ave Colombo 5790, BR-87020900 Maringa, PR, Brazil
[2] Univ Autonoma Metropolitana Iztapalapa, Dept Matemat, Cdmx, Brazil
关键词
Euler Theorem; Fermat's Little Theorem; ring;
D O I
10.1080/00927872.2021.2024841
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Considering Z(n) the ring of integers modulo n, the classical Fermat-Euler theorem establishes the existence of a specific natural number phi(n) satisfying the following property: x(phi(n))=1 for all x belonging to the group of units of Z(n). In this manuscript, this result is extended to a class of rings that satisfies some mild conditions.
引用
收藏
页码:3064 / 3078
页数:15
相关论文
共 13 条
[1]   GENERALIZATIONS OF THEOREMS OF WILSON, FERMAT AND EULER [J].
CHAO, CY .
JOURNAL OF NUMBER THEORY, 1982, 15 (01) :95-114
[2]  
de Melo Hernandez F.D., 2020, ARXIV191107743V2MATH
[3]   On idempotents of a class of commutative rings [J].
de Melo Hernandez, Fernanda D. ;
Hernandez Melo, Cesar A. ;
Tapia-Recillas, Horacio .
COMMUNICATIONS IN ALGEBRA, 2020, 48 (09) :4013-4026
[4]  
Dickson, 1899, ANN MATH, V1, P31, DOI 10.2307/1967263
[5]  
GILLESPIE FS, 1989, FIBONACCI QUART, V27, P109
[6]  
Harger R.T., 2000, INT J MATH EDUC SCI, V31, P476, DOI [10.1080/00207390050032351, DOI 10.1080/00207390050032351]
[7]   Generalizations of Fermat's little theorem via group theory [J].
Isaacs, IM ;
Pournaki, MR .
AMERICAN MATHEMATICAL MONTHLY, 2005, 112 (08) :734-740
[8]   Fermat-Euler theorem in algebraic number fields [J].
Lassak, M ;
Porubsky, S .
JOURNAL OF NUMBER THEORY, 1996, 60 (02) :254-290
[9]  
McDonald B. R., 1974, FINITE RINGS IDENTIT
[10]  
Moore EH., 1896, B AM MATH SOC, V2, P189, DOI DOI 10.1090/S0002-9904-1896-00337-2