Modelling Elastic Wave Propagation Using the k-Wave MATLAB Toolbox

被引:108
作者
Treeby, Bradley E. [1 ]
Jaros, Jiri [2 ]
Rohrbac, Daniel [3 ]
Cox, B. T. [1 ]
机构
[1] UCL, Dept Med Phys & Biomed Engn, London, England
[2] Brno Univ Technol, Fac Informat Technol, CS-61090 Brno, Czech Republic
[3] Riverside Res, Lizzi Ctr Biomed Engn, New York, NY USA
来源
2014 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS) | 2014年
基金
英国工程与自然科学研究理事会;
关键词
ULTRASOUND PROPAGATION; HETEROGENEOUS MEDIA; SIMULATION;
D O I
10.1109/ULTSYM.2014.0037
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A new model for simulating elastic wave propagation using the open-source k-Wave MATLAB Toolbox is described. The model is based on two coupled first-order equations describing the stress and particle velocity within an isotropic medium. For absorbing media, the Kelvin-Voigt model of viscoelasticity is used. The equations are discretised in 2D and 3D using an efficient time-stepping pseudospectral scheme. This uses the Fourier collocation spectral method to compute spatial derivatives and a leapfrog finite-difference scheme to integrate forwards in time. A multi-axial perfectly matched layer (M-PML) is implemented to allow free-field simulations using a finite-sized computational grid. Acceleration using a graphics processing unit (GPU) is supported via the MATLAB Parallel Computing Toolbox. An overview of the simulation functions and their theoretical and numerical foundations is described.
引用
收藏
页码:146 / 149
页数:4
相关论文
共 11 条
[1]   Three-dimensional simulation of ultrasound propagation through trabecular bone structures measured by synchrotron microtomography [J].
Bossy, E ;
Padilla, F ;
Peyrin, F ;
Laugier, P .
PHYSICS IN MEDICINE AND BIOLOGY, 2005, 50 (23) :5545-5556
[2]   WAVE SIMULATION IN BIOLOGIC MEDIA BASED ON THE KELVIN-VOIGT FRACTIONAL-DERIVATIVE STRESS-STRAIN RELATION [J].
Caputo, Michele ;
Carcione, Jose M. ;
Cavallini, Fabio .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2011, 37 (06) :996-1004
[3]   A first-order k-space model for elastic wave propagation in heterogeneous media [J].
Firouzi, K. ;
Cox, B. T. ;
Treeby, B. E. ;
Saffari, N. .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2012, 132 (03) :1271-1283
[4]  
Jaros J., 2014, ARXIV14084675PHYSICS
[5]  
Liu QH, 1999, IEEE T GEOSCI REMOTE, V37, P917, DOI 10.1109/36.752210
[6]   ABSORPTION OF SOUND IN FLUIDS [J].
MARKHAM, JJ ;
BEYER, RT ;
LINDSAY, RB .
REVIEWS OF MODERN PHYSICS, 1951, 23 (04) :353-411
[7]   On the stability of a non-convolutional perfectly matched layer for isotropic elastic media [J].
Meza-Fajardo, Kristel C. ;
Papageorgiou, Apostolos S. .
SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2010, 30 (03) :68-81
[8]  
Okita K., 2014, COMPUT MECH
[9]  
Pollard H.H., 1977, SOUND WAVES SOLIDS
[10]   Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method [J].
Treeby, Bradley E. ;
Jaros, Jiri ;
Rendell, Alistair P. ;
Cox, B. T. .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2012, 131 (06) :4324-4336