Asymptotic behavior of solutions of the anisotropic heterogeneous linearized elasticity system in thin cylinders

被引:50
作者
Murat, F
Sili, A
机构
[1] Univ Paris 06, Anal Numer Lab, F-75252 Paris 05, France
[2] Univ Toulon & Var, Lab Anal Non Lineaire Appl, F-83957 La Garde, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1999年 / 328卷 / 02期
关键词
D O I
10.1016/S0764-4442(99)80159-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the convergence ol the solution u(epsilon) of an anisotropic, heterogeneous, linearized elasticity problem in a cylinder, the diameter of which tends to zero. We prove in particular that u(epsilon) - (u + epsilon v + epsilon(2)w) strongly converges to zero (in a sense which will be specified), where (u,v,w) is the unique solution of an elliptic system of partial differential equations. (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:179 / 184
页数:6
相关论文
共 16 条
  • [1] CAILLERIE D, 1981, RAIRO-ANAL NUMER-NUM, V15, P295
  • [2] CIARLET PG, 1998, STUDIES MATH ITS APP, V27
  • [3] CIORANESCU D, 1995, ADV MATH SCI APPL, V5, P287
  • [4] HOMOGENIZATION LIMITS OF THE EQUATIONS OF ELASTICITY IN THIN DOMAINS
    DAMLAMIAN, A
    VOGELIUS, M
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (02) : 435 - 451
  • [5] Dauge M, 1996, ASYMPTOTIC ANAL, V13, P167
  • [6] DESTUYNDER P, 1981, RAIRO-ANAL NUMER-NUM, V15, P331
  • [7] Geymonat G., 1987, APPL MULTIPLE SCALIN, P118
  • [8] KOZLOV VA, 1995, ASYMPTOTIC ANAL, V11, P343
  • [9] LEDRET H, 1995, ASYMPTOTIC ANAL, V10, P367
  • [10] MURAT F, 1994, CR ACAD SCI I-MATH, V319, P567