DEEP LEARNING BASED GASTRIC CANCER IDENTIFICATION

被引:0
作者
Li, Yuexiang [1 ]
Li, Xuechen [1 ]
Xie, Xinpeng [1 ]
Shen, Linlin [1 ]
机构
[1] Shenzhen Univ, Comp Vis Inst, Shenzhen, Guangdong, Peoples R China
来源
2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018) | 2018年
基金
中国博士后科学基金;
关键词
Gastric cancer; deep learning network; classification;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Gastric cancer is one of the most common cancers, which causes the second largest deaths worldwide. Manual pathological inspection of gastric slice is time-consuming and usually suffers from inter-observer variations. In this paper, we proposed a deep learning based framework, namely GastricNet, for automatic gastric cancer identification. The proposed network adopts different architectures for shallow and deep layers for better feature extraction. We evaluate the proposed framework on publicly available BOT gastric slice dataset. The experimental results show that our deep learning framework performs better than state-of-the-art networks like DenseNet, ResNet, and achieved an accuracy of 100% for slice-based classification.
引用
收藏
页码:182 / 185
页数:4
相关论文
共 50 条
[31]   Deep learning for cancer type classification and driver gene identification [J].
Zexian Zeng ;
Chengsheng Mao ;
Andy Vo ;
Xiaoyu Li ;
Janna Ore Nugent ;
Seema A. Khan ;
Susan E. Clare ;
Yuan Luo .
BMC Bioinformatics, 22
[32]   Deep learning for cancer type classification and driver gene identification [J].
Zeng, Zexian ;
Mao, Chengsheng ;
Vo, Andy ;
Li, Xiaoyu ;
Nugent, Janna Ore ;
Khan, Seema A. ;
Clare, Susan E. ;
Luo, Yuan .
BMC BIOINFORMATICS, 2021, 22 (SUPPL 4)
[33]   Identification of gastric cancer subtypes based on pathway clustering [J].
Li, Lin ;
Wang, Xiaosheng .
NPJ PRECISION ONCOLOGY, 2021, 5 (01)
[34]   GCdiscrimination: identification of gastric cancer based on a milliliter of blood [J].
Wu, Jiangpeng ;
Yang, Yifan ;
Cheng, Long ;
Wu, Jing ;
Xi, Lili ;
Ma, Ying ;
Zhang, Pengyi ;
Xu, Xiaoying ;
Zhang, Dekui ;
Li, Shuyan .
BRIEFINGS IN BIOINFORMATICS, 2021, 22 (01) :536-544
[35]   Identification of Prognostic Biomarkers for Gastric Cancer Using a Machine Learning Method [J].
Li, Chunguang ;
Gong, Cheng ;
Chen, Wenhao ;
Li, Daojiang ;
Xie, Youli ;
Tao, Wenhui .
JOURNAL OF BIOLOGICAL REGULATORS AND HOMEOSTATIC AGENTS, 2023, 37 (01) :259-270
[36]   Dual-energy CT-based deep learning radiomics can improve lymph node metastasis risk prediction for gastric cancer [J].
Li, Jing ;
Dong, Di ;
Fang, Mengjie ;
Wang, Rui ;
Tian, Jie ;
Li, Hailiang ;
Gao, Jianbo .
EUROPEAN RADIOLOGY, 2020, 30 (04) :2324-2333
[37]   Development and validation of a deep learning model for predicting gastric cancer recurrence based on CT imaging: a multicenter study [J].
Cao, Mengxuan ;
Hu, Can ;
Li, Feng ;
He, Jingyang ;
Li, Enze ;
Zhang, Ruolan ;
Shi, Wenyi ;
Zhang, Yanqiang ;
Zhang, Yu ;
Yang, Qing ;
Zhao, Qianyu ;
Shi, Lei ;
Xu, Zhiyuan ;
Cheng, Xiangdong .
INTERNATIONAL JOURNAL OF SURGERY, 2024, 110 (12) :7598-7606
[38]   The Immune Subtypes and Landscape of Gastric Cancer and to Predict Based on the Whole-Slide Images Using Deep Learning [J].
Chen, Yan ;
Sun, Zepang ;
Chen, Wanlan ;
Liu, Changyan ;
Chai, Ruoyang ;
Ding, Jingjing ;
Liu, Wen ;
Feng, Xianzhen ;
Zhou, Jun ;
Shen, Xiaoyi ;
Huang, Shan ;
Xu, Zhongqing .
FRONTIERS IN IMMUNOLOGY, 2021, 12
[39]   Deep learning-based radiomics model can predict extranodal soft tissue metastasis in gastric cancer [J].
Liu, Shengyuan ;
Deng, Jingyu ;
Dong, Di ;
Fang, Mengjie ;
Ye, Zhaoxiang ;
Hu, Yanfeng ;
Li, Hailin ;
Zhong, Lianzhen ;
Cao, Runnan ;
Zhao, Xun ;
Shang, Wenting ;
Li, Guoxin ;
Liang, Han ;
Tian, Jie .
MEDICAL PHYSICS, 2024, 51 (01) :267-277
[40]   Identification of Luminal A breast cancer by using deep learning analysis based on multi-modal images [J].
Liu, Menghan ;
Zhang, Shuai ;
Du, Yanan ;
Zhang, Xiaodong ;
Wang, Dawei ;
Ren, Wanqing ;
Sun, Jingxiang ;
Yang, Shiwei ;
Zhang, Guang .
FRONTIERS IN ONCOLOGY, 2023, 13