DEEP LEARNING BASED GASTRIC CANCER IDENTIFICATION

被引:0
作者
Li, Yuexiang [1 ]
Li, Xuechen [1 ]
Xie, Xinpeng [1 ]
Shen, Linlin [1 ]
机构
[1] Shenzhen Univ, Comp Vis Inst, Shenzhen, Guangdong, Peoples R China
来源
2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018) | 2018年
基金
中国博士后科学基金;
关键词
Gastric cancer; deep learning network; classification;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Gastric cancer is one of the most common cancers, which causes the second largest deaths worldwide. Manual pathological inspection of gastric slice is time-consuming and usually suffers from inter-observer variations. In this paper, we proposed a deep learning based framework, namely GastricNet, for automatic gastric cancer identification. The proposed network adopts different architectures for shallow and deep layers for better feature extraction. We evaluate the proposed framework on publicly available BOT gastric slice dataset. The experimental results show that our deep learning framework performs better than state-of-the-art networks like DenseNet, ResNet, and achieved an accuracy of 100% for slice-based classification.
引用
收藏
页码:182 / 185
页数:4
相关论文
共 50 条
[21]   AUTOMATIC IDENTIFICATION OF CHARCOAL ORIGIN BASED ON DEEP LEARNING [J].
de Oliveira Neto, Ricardo Rodrigues ;
Rodrigues, Larissa Ferreira ;
Mari, Joao Fernando ;
Naldi, Murilo Coelho ;
Milagres, Emerson Gomes ;
Vital, Benedito Rocha ;
Oliveira Carneiro, Angelica de Cassia ;
Breda Binoti, Daniel Henrique ;
Lopes, Pablo Falco ;
Leite, Helio Garcia .
MADERAS-CIENCIA Y TECNOLOGIA, 2021, 23
[22]   Intelligent identification of carbonate components based on deep learning [J].
Dong, Yuqing ;
Hu, Chenlin ;
Quaye, Jonathan Atuquaye ;
Lu, Ning ;
Zhao, Lingfeng .
FACIES, 2025, 71 (01)
[23]   Deep learning-based segmentation for disease identification [J].
Mzoughi, Olfa ;
Yahiaoui, Itheri .
ECOLOGICAL INFORMATICS, 2023, 75
[24]   Deep Learning-Based Protein Features Predict Overall Survival and Chemotherapy Benefit in Gastric Cancer [J].
Zhao, Xuefei ;
Xia, Xia ;
Wang, Xinyue ;
Bai, Mingze ;
Zhan, Dongdong ;
Shu, Kunxian .
FRONTIERS IN ONCOLOGY, 2022, 12
[25]   Development of a deep learning-based model to diagnose mixed-type gastric cancer accurately [J].
Ning, Xinjie ;
Liu, Ruide ;
Wang, Nan ;
Xiao, Xuewen ;
Wu, Siqi ;
Wang, Yu ;
Yi, Chenju ;
He, Yulong ;
Li, Dan ;
Chen, Hui .
INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2023, 162
[26]   Early weed identification based on deep learning: A review [J].
Zhang, Yangkai ;
Wang, Mengke ;
Zhao, Danlei ;
Liu, Chunye ;
Liu, Zhengguang .
SMART AGRICULTURAL TECHNOLOGY, 2023, 3
[27]   Gastric cancer detection based on Colorectal Cancer transfer learning [J].
Nobrega, Sara ;
Neto, Alexandre ;
Coimbra, Miguel ;
Cunha, Antonio .
2023 IEEE 7TH PORTUGUESE MEETING ON BIOENGINEERING, ENBENG, 2023, :72-75
[28]   Identification of gastric cancer subtypes based on pathway clustering [J].
Li, Lin ;
Wang, Xiaosheng .
NPJ PRECISION ONCOLOGY, 2021, 5 (01)
[29]   GCdiscrimination: identification of gastric cancer based on a milliliter of blood [J].
Wu, Jiangpeng ;
Yang, Yifan ;
Cheng, Long ;
Wu, Jing ;
Xi, Lili ;
Ma, Ying ;
Zhang, Pengyi ;
Xu, Xiaoying ;
Zhang, Dekui ;
Li, Shuyan .
BRIEFINGS IN BIOINFORMATICS, 2021, 22 (01) :536-544
[30]   Ensemble Deep Learning Model to Predict Lymphovascular Invasion in Gastric Cancer [J].
Lee, Jonghyun ;
Cha, Seunghyun ;
Kim, Jiwon ;
Kim, Jung Joo ;
Kim, Namkug ;
Jae Gal, Seong Gyu ;
Kim, Ju Han ;
Lee, Jeong Hoon ;
Choi, Yoo-Duk ;
Kang, Sae-Ryung ;
Song, Ga-Young ;
Yang, Deok-Hwan ;
Lee, Jae-Hyuk ;
Lee, Kyung-Hwa ;
Ahn, Sangjeong ;
Moon, Kyoung Min ;
Noh, Myung-Giun .
CANCERS, 2024, 16 (02)