Abundant rogue wave solutions for the (2+1)-dimensional generalized Korteweg-de Vries equation

被引:5
|
作者
Lu, Huanhuan [1 ]
Zhang, Yufeng [1 ]
机构
[1] China Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Hirota bilinear formulation; multiple rogue waves; symbolic computation; LUMP;
D O I
10.1515/ijnsns-2020-0094
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we analyse two types of rogue wave solutions generated from two improved ansatzs, to the (2 + 1)-dimensional generalized Korteweg-de Vries equation. With symbolic computation, the first-order rogue waves, second-order rogue waves, third-order rogue waves are generated directly from the first ansatz. Based on the Hirota bilinear formulation, another type of one-rogue waves and two-rogue waves can be obtained from the second ansatz. In addition, the dynamic behaviours of obtained rogue wave solutions are illustrated graphically.
引用
收藏
页码:999 / 1010
页数:12
相关论文
共 50 条
  • [31] The Schwarzian Korteweg-de!Vries equation in (2+1) dimensions
    Ramírez, J
    Bruzón, MS
    Muriel, C
    Gandarias, ML
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (05): : 1467 - 1484
  • [32] Rogue waves, modulation instability of the (2+1)-dimensional complex modified Korteweg-de Vries equation on the periodic background
    Sun, Hai-Ying
    Zhaqilao
    WAVE MOTION, 2023, 116
  • [33] Nonautonomous characteristics of lump solutions for a (2+1)-dimensional Korteweg-de Vries equation with variable coefficients
    Chen, Fei-Peng
    Chen, Wei-Qin
    Wang, Lei
    Ye, Zhen-Jun
    APPLIED MATHEMATICS LETTERS, 2019, 96 : 33 - 39
  • [34] GENERALIZED KORTEWEG-DE VRIES EQUATION
    TSUTSUMI, M
    MUKASA, T
    IINO, R
    PROCEEDINGS OF THE JAPAN ACADEMY, 1970, 46 (09): : 921 - &
  • [35] New solitary wave solutions of (2+1)-dimensional space-time fractional Burgers equation and Korteweg-de Vries equation
    Li, Chao
    Guo, Qilong
    Zhao, Meimei
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (08) : 2255 - 2262
  • [36] ON THE (GENERALIZED) KORTEWEG-DE VRIES EQUATION
    KENIG, CE
    PONCE, G
    VEGA, L
    DUKE MATHEMATICAL JOURNAL, 1989, 59 (03) : 585 - 610
  • [37] (2+1)-DIMENSIONAL GENERALIZATIONS OF THE KORTEWEG-DE VRIES EQUATIONS
    Alexeyeva, A. V.
    BULLETIN OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN, 2012, (05): : 19 - 24
  • [38] Nth-order rogue wave solutions of the complex modified Korteweg-de Vries equation
    Zhaqilao
    PHYSICA SCRIPTA, 2013, 87 (06)
  • [39] New classes of solutions for the Schwarzian!Korteweg-de Vries equation in (2+1) dimensions
    Ramirez, J.
    Romero, J. L.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (16) : 4351 - 4365
  • [40] DIVERSITY SOLITON EXCITATIONS FOR THE (2+1)-DIMENSIONAL SCHWARZIAN KORTEWEG-DE VRIES EQUATION
    Li, Zitian
    THERMAL SCIENCE, 2018, 22 (04): : 1781 - 1786