Entropy solution theory for fractional degenerate convection-diffusion equations

被引:75
作者
Cifani, Simone [1 ]
Jakobsen, Espen R. [1 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Dept Math, N-7491 Trondheim, Norway
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2011年 / 28卷 / 03期
关键词
Degenerate convection-diffusion equations; Fractional/fractal conservation laws; Entropy solutions; Uniqueness; Numerical method; Convergence;
D O I
10.1016/j.anihpc.2011.02.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a class of degenerate convection-diffusion equations with a fractional non-linear diffusion term. This class is a new, but natural, generalization of local degenerate convection-diffusion equations, and include anomalous diffusion equations, fractional conservation laws, fractional porous medium equations, and new fractional degenerate equations as special cases. We define weak entropy solutions and prove well-posedness under weak regularity assumptions on the solutions, e.g. uniqueness is obtained in the class of bounded integrable solutions. Then we introduce a new monotone conservative numerical scheme and prove convergence toward the entropy solution in the class of bounded integrable BV functions. The well-posedness results are then extended to non-local terms based on general Levy operators, connections to some fully non-linear HJB equations are established, and finally, some numerical experiments are included to give the reader an idea about the qualitative behavior of solutions of these new equations. (C) 2011 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:413 / 441
页数:29
相关论文
共 41 条
[11]  
CAFFARELLI LA, ARXIV10010410
[12]   Entropy solutions for nonlinear degenerate problems [J].
Carrillo, J .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 147 (04) :269-361
[13]  
CIFANI S, 2010, SPECTRAL VANIS UNPUB
[14]  
CIFANI S, 2010, DISCONTINUOUS UNPUB
[15]   The discontinuous Galerkin method for fractal conservation laws [J].
Cifani, Simone ;
Jakobsen, Espen R. ;
Karlsen, Kenneth H. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (03) :1090-1122
[16]  
Clavin P, 2002, NATO ADV SCI I C-MAT, V569, P49
[17]   The local discontinuous Galerkin method for time-dependent convection-diffusion systems [J].
Cockburn, B ;
Shu, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2440-2463
[18]  
Cont R., 2004, Financial Modelling with Jump Processes
[19]   SOME RELATIONS BETWEEN NONEXPANSIVE AND ORDER PRESERVING MAPPINGS [J].
CRANDALL, MG ;
TARTAR, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 78 (03) :385-390
[20]   Numerical approximation of entropy solutions for hyperbolic integro-differential equations [J].
Dedner, A ;
Rohde, C .
NUMERISCHE MATHEMATIK, 2004, 97 (03) :441-471