Modeling the optical coherence tomography geometry using the extended Huygens-Fresnel principle and Monte Carlo simulations

被引:0
作者
Andersen, PE [1 ]
Thrane, L [1 ]
Yura, HT [1 ]
Tycho, A [1 ]
Jorgensen, TM [1 ]
机构
[1] Riso Natl Lab, Opt & Fluid Dynam Dept, DK-4000 Roskilde, Denmark
来源
SARATOV FALL MEETING 2002: OPTICAL TECHNOLOGIES IN BIOPHYSICS AND MEDICINE IV | 2002年 / 5068卷
关键词
optical coherence tomography; extended Huygens-Fresnel principle; Monte Carlo simulations; multiple scattering;
D O I
暂无
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
We review a new theoretical description of the optical coherence tomography (OCT) geometry for imaging in highly scattering tissue. The new model is based on the extended Huygens-Fresnel principle, and it is valid in the single and multiple scattering regimes. Furthermore, we simulate the operation of the OCT system using a specially adapted Monte Carlo simulation code. To enable Monte Carlo simulation of the coherent mixing of the sample and reference beams the code uses a method of calculating the OCT signal derived using the extended Huygens-Fresnel principle. Results obtained with the Monte Carlo simulation and the new theoretical description compare favorably. Finally, the application of the extended Huygens-Fresnel principle for extracting optical scattering properties is used to obtain a so-called true reflection algorithm.
引用
收藏
页码:170 / 181
页数:12
相关论文
共 50 条
  • [31] Probabilistic modeling of seismically triggered landslides using Monte Carlo simulations
    Wang Huai-bing
    Sassa, Kyoji
    ROCK AND SOIL MECHANICS, 2007, 28 (12) : 2565 - 2569
  • [32] Prediction of beam hardening artefacts in computed tomography using Monte Carlo simulations
    Thomsen, M.
    Knudsen, E. B.
    Willendrup, P. K.
    Bech, M.
    Willner, M.
    Pfeiffer, F.
    Poulsen, M.
    Lefmann, K.
    Feidenhans'l, R.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2015, 342 : 314 - 320
  • [33] Identification of layers in optical coherence tomography of skin: comparative analysis of experimental and Monte Carlo simulated images
    Shlivko, I. L.
    Kirillin, M. Yu.
    Donchenko, E. V.
    Ellinsky, D. O.
    Garanina, O. E.
    Neznakhina, M. S.
    Agrba, P. D.
    Kamensky, V. A.
    SKIN RESEARCH AND TECHNOLOGY, 2015, 21 (04) : 419 - 425
  • [34] Monte Carlo simulation of an optical coherence tomography signal -: art. no. 59461P
    Myllylä, R
    Kirillin, M
    Hast, J
    Priezzhev, A
    Optical Materials and Applications, 2005, 5946 : P9461 - P9461
  • [35] A Mesh-Based Monte Carlo Study for Investigating Structural and Functional Imaging of Brain Tissue Using Optical Coherence Tomography
    Yi, Luying
    Sun, Liqun
    Zou, Mingli
    Hou, Bo
    APPLIED SCIENCES-BASEL, 2019, 9 (19):
  • [36] Combining Photonic Crystal and Optical Monte Carlo Simulations: Implementation, Validation and Application in a Positron Emission Tomography Detector
    Thalhammer, Christof
    Breuer, Johannes
    Fuehrer, Thorsten
    Popescu, Alexandru
    Hedler, Harry
    Walther, Thomas
    Niendorf, Thoralf
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2014, 61 (06) : 3618 - 3626
  • [37] Fuzzy inference systems for mineral prospectivity modeling-optimized using Monte Carlo simulations
    Chudasama, Bijal
    METHODSX, 2022, 9
  • [38] Doppler mapping of an alternating-sign flow with complex geometry using optical coherence tomography
    Proskurin, S. G.
    Potlov, A. Yu.
    Frolov, S. V.
    QUANTUM ELECTRONICS, 2014, 44 (01) : 54 - 58
  • [39] Investigation of Femtosecond Laser-Enabled Keratoplasty Wound Geometry Using Optical Coherence Tomography
    Heur, Martin
    Tang, Maolong
    Yiu, Samuel
    Zhang, Xinbo
    Huang, David
    CORNEA, 2011, 30 (08) : 889 - 894
  • [40] Imitation of optical coherence tomography images by wave Monte Carlo-based approach implemented with the Leontovich-Fock equation
    Bulygin, Andrey D.
    Vrazhnov, Denis A.
    Sim, Elena S.
    Meglinski, Igor
    Kistenev, Yury V.
    OPTICAL ENGINEERING, 2020, 59 (06)