Bond-Selective Imaging of Cells by Mid-Infrared Photothermal Microscopy in High Wavenumber Region

被引:51
作者
Bai, Yeran [1 ,2 ,3 ,4 ]
Zhang, Delong [4 ]
Li, Chen [5 ]
Liu, Cheng [1 ,2 ]
Cheng, Ji-Xin [4 ]
机构
[1] Natl Lab High Power Laser & Phys, Shanghai 201800, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Key Lab High Power Laser & Phys, Shanghai 201800, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Boston Univ, Photon Ctr, Dept Biomed Engn Elect & Comp Engn, Boston, MA 02215 USA
[5] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA
关键词
DIFFERENCE-FREQUENCY-GENERATION; STIMULATED RAMAN-SCATTERING; MU-M; INFRARED-SPECTROSCOPY; ABSORPTION; PULSES;
D O I
10.1021/acs.jpcb.7b09570
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using a visible beam to probe the thermal effect induced by infrared absorption, mid-infrared photothermal (MIP) microscopy allows bond-selective chemical imaging at submicron spatial resolution. Current MIP microscopes cannot reach the high wavenumber region due to the limited tunability of the existing quantum cascade laser source. We extend the spectral range of MIP microscopy by difference frequency generation (DFG) from two chirped femtosecond pulses. Flexible wavelength tuning in both C-D and C-H regions was achieved with mid-infrared power up to 22.1 mW and spectral width of 29.3 cm(-1). Distribution of fatty acid in live human lung cancer cells was revealed by MIP imaging of the C-D bond at 2192 cm(-1).
引用
收藏
页码:10249 / 10255
页数:7
相关论文
共 48 条
[1]   Mid-infrared Fourier transform spectroscopy with a broadband frequency comb [J].
Adler, Florian ;
Maslowski, Piotr ;
Foltynowicz, Aleksandra ;
Cossel, Kevin C. ;
Briles, Travis C. ;
Hartl, Ingmar ;
Ye, Jun .
OPTICS EXPRESS, 2010, 18 (21) :21861-21872
[2]   D38-cholesterol as a Raman active probe for imaging intracellular cholesterol storage [J].
Alfonso-Garcia, Alba ;
Pfisterer, Simon G. ;
Riezman, Howard ;
Ikonen, Elina ;
Potma, Eric O. .
JOURNAL OF BIOMEDICAL OPTICS, 2016, 21 (06)
[3]  
[Anonymous], 2003, Nonlinear Opt.
[4]  
[Anonymous], 2014, SCI REP
[5]   Large scale infrared imaging of tissue micro arrays (TMAs) using a tunable Quantum Cascade Laser (QCL) based microscope [J].
Bassan, Paul ;
Weida, Miles J. ;
Rowlette, Jeremy ;
Gardner, Peter .
ANALYST, 2014, 139 (16) :3856-3859
[6]   Power-boosted difference-frequency source for high-resolution infrared spectroscopy [J].
Borri, S ;
Cancio, P ;
De Natale, P ;
Giusfredi, G ;
Mazzotti, D ;
Tamassia, F .
APPLIED PHYSICS B-LASERS AND OPTICS, 2003, 76 (04) :473-477
[7]   Narrowband carrier-envelope phase stable mid-infrared pulses at wavelengths beyond 10 μm by chirped-pulse difference frequency generation [J].
Cartella, A. ;
Nova, T. F. ;
Oriana, A. ;
Cerullo, G. ;
Foerst, M. ;
Manzoni, C. ;
Cavalleri, A. .
OPTICS LETTERS, 2017, 42 (04) :663-666
[8]   Detection of trace materials with fourier transform infrared spectroscopy using a multi-channel detector [J].
Chan, KLA ;
Kazarian, SG .
ANALYST, 2006, 131 (01) :126-131
[9]   Mid-infrared trace gas detection using continuous-wave difference frequency generation in periodically poled RbTiOAsO4 [J].
Chen, W ;
Mouret, G ;
Boucher, D ;
Tittel, FK .
APPLIED PHYSICS B-LASERS AND OPTICS, 2001, 72 (07) :873-876
[10]   High peak power λ∼3.3 and 3.5 μm InGaAs/AlAs(Sb) quantum cascade lasers operating up to 400 K [J].
Commin, J. P. ;
Revin, D. G. ;
Zhang, S. Y. ;
Krysa, A. B. ;
Kennedy, K. ;
Cockburn, J. W. .
APPLIED PHYSICS LETTERS, 2010, 97 (03)