Interpretable Counterfactual Explanations Guided by Prototypes

被引:137
作者
Van Looveren, Arnaud [1 ]
Klaise, Janis [1 ]
机构
[1] Seldon Technol, 41 Luke St, London EC2A 4AR, England
来源
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021: RESEARCH TRACK, PT II | 2021年 / 12976卷
关键词
Interpretation; Transparency/Explainability; Counterfactual explanations; ALGORITHM; SELECTION;
D O I
10.1007/978-3-030-86520-7_40
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a fast, model agnostic method for finding interpretable counterfactual explanations of classifier predictions by using class prototypes. We show that class prototypes, obtained using either an encoder or through class specific k-d trees, significantly speed up the search for counterfactual instances and result in more interpretable explanations. We quantitatively evaluate interpretability of the generated counterfactuals to illustrate the effectiveness of our method on an image and tabular dataset, respectively MNIST and Breast Cancer Wisconsin (Diagnostic). Additionally, we propose a principled approach to handle categorical variables and illustrate our method on the Adult (Census) dataset. Our method also eliminates the computational bottleneck that arises because of numerical gradient evaluation for black box models.
引用
收藏
页码:650 / 665
页数:16
相关论文
共 28 条
[1]  
Banerjee A, 2005, J MACH LEARN RES, V6, P1705
[2]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[3]   MULTIDIMENSIONAL BINARY SEARCH TREES USED FOR ASSOCIATIVE SEARCHING [J].
BENTLEY, JL .
COMMUNICATIONS OF THE ACM, 1975, 18 (09) :509-517
[4]   PROTOTYPE SELECTION FOR INTERPRETABLE CLASSIFICATION [J].
Bien, Jacob ;
Tibshirani, Robert .
ANNALS OF APPLIED STATISTICS, 2011, 5 (04) :2403-2424
[5]  
Borg I., 2007, Modern Multidimensional Scaling, DOI [DOI 10.1007/0-387-28981-X, 10.1007/0-387-28981-X]
[6]   A WEIGHTED NEAREST NEIGHBOR ALGORITHM FOR LEARNING WITH SYMBOLIC FEATURES [J].
COST, S ;
SALZBERG, S .
MACHINE LEARNING, 1993, 10 (01) :57-78
[7]  
Dhurandhar A., 2017, ARXIV PREPRINT ARXIV
[8]  
Dhurandhar A, 2019, ARXIV190600117
[9]  
Dhurandhar A, 2018, ADV NEUR IN, V31
[10]  
Dua Dheeru, 2017, UCI machine learning repository