Some norm inequalities for operators

被引:3
作者
Kapil, Yogesh [1 ]
Pal, Rajinder [1 ]
Singh, Mandeep [1 ]
Aujla, Jaspal Singh [2 ]
机构
[1] St Longowal Inst Engn & Technol, Dept Math, Longowal 148106, Punjab, India
[2] Dr BR Ambedkar Natl Inst Technol, Dept Math, Jalandhar 144011, Punjab, India
关键词
Operator algebra; Norm inequality; Unitarily invariant norm; Operator mean; CAUCHY-SCHWARZ INEQUALITY; LIEB;
D O I
10.1007/s43036-019-00015-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any unitarily invariant norm on Hilbert-space operators, we prove Holder and Cauchy-Schwarz inequalities. As a consequence, several inequalities are lifted to the operator settings. Some more associated, norm inequalities for operators are obtained.
引用
收藏
页码:627 / 639
页数:13
相关论文
共 21 条
[1]  
ANDO T, 1994, LINEAR ALGEBRA APPL, V198, P113
[2]  
[Anonymous], METHODS MATH PHYS
[3]  
[Anonymous], 1997, LINEAR OPERATORS
[4]  
[Anonymous], NIHONKAI J MATH
[5]   ON AN INEQUALITY OF LIEB AND THIRRING [J].
ARAKI, H .
LETTERS IN MATHEMATICAL PHYSICS, 1990, 19 (02) :167-170
[6]   ON THE SINGULAR-VALUES OF A PRODUCT OF OPERATORS [J].
BHATIA, R ;
KITTANEH, F .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (02) :272-277
[7]  
BHATIA R, 1988, J OPERAT THEOR, V19, P129
[8]  
BHATIA R, 1995, LINEAR ALGEBRA APPL, V224, P119
[9]  
Bhatia R., 1997, MATRIX ANAL, DOI [10.1007/978-1-4612-0653-8, DOI 10.1007/978-1-4612-0653-8]
[10]  
Furuta T., 1989, REV MATH PHYS, V1, P135, DOI 10.1142/S0129055X89000079