共 29 条
Very high density EEG elucidates spatiotemporal aspects of early visual processing
被引:45
作者:
Robinson, Amanda K.
[1
,2
]
Venkatesh, Praveen
[2
,3
]
Boring, Matthew J.
[2
,4
]
Tarr, Michael J.
[1
,2
]
Grover, Pulkit
[2
,3
]
Behrmann, Marlene
[1
,2
]
机构:
[1] Carnegie Mellon Univ, Dept Psychol, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Ctr Neural Basis Cognit, Pittsburgh, PA 15213 USA
[3] Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15213 USA
[4] Univ Pittsburgh, Dept Neurosci, Pittsburgh, PA USA
来源:
基金:
美国国家科学基金会;
美国安德鲁·梅隆基金会;
关键词:
RESPONSES;
DYNAMICS;
D O I:
10.1038/s41598-017-16377-3
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Standard human EEG systems based on spatial Nyquist estimates suggest that 20-30 mm electrode spacing suffices to capture neural signals on the scalp, but recent studies posit that increasing sensor density can provide higher resolution neural information. Here, we compared "super-Nyquist" density EEG ("SND") with Nyquist density ("ND") arrays for assessing the spatiotemporal aspects of early visual processing. EEG was measured from 128 electrodes arranged over occipitotemporal brain regions (14 mm spacing) while participants viewed flickering checkerboard stimuli. Analyses compared SND with ND-equivalent subsets of the same electrodes. Frequency-tagged stimuli were classified more accurately with SND than ND arrays in both the time and the frequency domains. Representational similarity analysis revealed that a computational model of V1 correlated more highly with the SND than the ND array. Overall, SND EEG captured more neural information from visual cortex, arguing for increased development of this approach in basic and translational neuroscience.
引用
收藏
页数:11
相关论文